scholarly journals A MPM framework for large deformation seismic response analysis

Author(s):  
Marc Kohler ◽  
Andreas Stoecklin ◽  
Alexander M. Puzrin

Landslides are often triggered by earthquakes and can cause immense damage due to large mass movements. To model such large-deformation events, the material point method (MPM) has become increasingly popular in recent years. A limitation of existing MPM implementations is the lack of appropriate boundary conditions to perform seismic response analysis of slopes. In this article, an extension to the basic MPM framework is proposed for simulating the seismic triggering and subsequent collapse of slopes within a single analysis step. Original implementations of a compliant base boundary and free-field boundary conditions in the MPM framework are presented, enabling the application of input ground motions while accounting for the absorption of outgoing waves and the free-ground movement at the lateral boundaries. An example slope is analysed to illustrate the proposed procedure and to benchmark it against the results obtained using an independent simulation technique, based on a three-step FE analysis. The comparison generally shows a good agreement of the results obtained from the two independent procedures and highlights advantages of the presented “all-in-one” MPM approach, in particular for long duration strong motions.

2020 ◽  
Author(s):  
Jingyan Lan ◽  
Juan Liu ◽  
Xing Song

Abstract. In the complex medium system of sea area, the overlying sea water and the surface soft soil have a significant impact on the seafloor ground motion, which brings great seismic risk to the safety of offshore engineering structures. In this paper, four sets of typical free field models are constructed and established, which are land model, land model with surface soft soil, sea model and sea model with surface soft soil. The dynamic finite difference method is used to carry out two-dimensional seismic response analysis of typical free field based on the input forms about P and SV wave. By comparing the seismic response analysis results of four groups of calculation models, the effects of overlying seawater and soft soil on peak acceleration and acceleration response spectrum are studied. The results show that when SV wave is input, the peak acceleration and response spectrum of the surface of soft soil on the surface and the seabed surface can be amplified, while the overlying sea water can significantly reduce the ground motion. When P wave is used, the effect of overlying seawater and soft soil on peak acceleration and response spectrum of surface and seabed can be ignored. The peak acceleration decreases first and then increases from the bottom to the surface, and the difference of peak acceleration calculated by four free field models is not obvious. The results show that the overlying sea water and the surface soft soil layer have little effect on the peak acceleration of ground motion below the surface.


2014 ◽  
Vol 607 ◽  
pp. 735-738
Author(s):  
Ru Lin Zhang ◽  
Wen Dong Yang ◽  
Feng Sun

The seismic response analysis of project soil site is important to obtain the ground motion parameters for seismic design of upper structures. First, a simplified solving method is introduced, in which, the horizontal seismic loadings are expanded into Fourier series in the circumferential direction, using the orthogonality between the normal and tangential direction on the circumference, the three-dimensional problem is reduced to a series of two-dimensional problems. Then, the simplified method is used for seismic response analysis of a practical large-scale soil site with large diameter circular diaphragm wall. The influence of wall to the site is obtained through two field conditions, which are wall field and free field (without wall). Compare with the results of the site without wall, the peak acceleration of the pit bottom is increased owing to the confinement effect of wall, and the influence to ground surface far from the wall is very little.


2021 ◽  
Vol 21 (2) ◽  
pp. 577-585
Author(s):  
Jingyan Lan ◽  
Juan Liu ◽  
Xing Song

Abstract. In the complex medium system of the sea area, the overlying seawater and the surface soft soil have a significant impact on the seafloor ground motion, which brings great seismic risk to the safety of offshore-engineering structures. In this paper, four sets of typical free-field models are constructed and established, comprising a land model, land model with surface soft soil, sea model and sea model with surface soft soil. The dynamic finite-difference method is used to carry out two-dimensional seismic response analysis of a typical free field based on the input forms of P and SV waves. By comparing the seismic response analysis results of four groups of calculation models, the effects of overlying seawater and soft soil on the peak acceleration and acceleration response spectrum are studied. The results show that when an SV wave is input, the peak acceleration and response spectrum of the surface of soft soil on the surface and the seabed surface can be amplified, while the overlying seawater can significantly reduce the ground motion. When the P wave is used, the effect of overlying seawater and soft soil on the peak acceleration and response spectrum of the surface and seabed can be ignored. The peak acceleration decreases first and then increases from the bottom to the surface, and the difference of peak acceleration calculated by four free-field models is not obvious. The results show that the overlying seawater and the surface soft soil layer have little effect on the peak acceleration of ground motion below the surface.


2014 ◽  
Vol 912-914 ◽  
pp. 1739-1742
Author(s):  
Cai Ying Chen ◽  
Ke Lun Wei ◽  
Gui Qiang Yang

In this paper, using finite element software ANSYSanalyzes seismic respons of Fuyang river aqueduct, respectively establishfinite element model under viscoelastic boundary conditions and elasticboundary conditions, compare and analyze seismic respons of aqueduct structureunder two kinds of boundary conditions. The results show that, compared withelastic boundary conditions, viscoelastic boundary conditions not only cansimulate elastic recovery performance of foundation, but also can realizeinfinite medium radiation damping, and viscoelastic boundary conditions is moreclose to the actual situation.


1999 ◽  
Vol 5 (9) ◽  
pp. 71-76
Author(s):  
Takao MATSUMURA ◽  
Shinichiro ASANO ◽  
Jun YAMADA ◽  
Masao KOBA ◽  
Koji ITO ◽  
...  

2014 ◽  
Vol 711 ◽  
pp. 520-524 ◽  
Author(s):  
Huan Qin Liu ◽  
Wei Bin Li ◽  
Ruo Yang Wu ◽  
Lin Fei Yan

Based on one 240-meter-high special-shaped RC chimney, the structure’s dynamic performance and elastic-plastic seismic response analysis has been studied in detail. From the analysis, it demonstrates the weak areas in the chimney. The interlayer displacement angle about corresponding performance points under four kinds of loading mode were also acuired, and the response of four loading patterns were analyzed.


Sign in / Sign up

Export Citation Format

Share Document