Seismic fragility assessment of multi-span concrete highway bridges in British Columbia considering soil–structure interaction
Fragility curve is an effective tool for identifying the potential seismic risk and consequences during and after an earthquake. Recent seismic events have shown that bridges are highly sensitive and vulnerable during earthquakes. There has been limited research to evaluate the seismic vulnerability of the existing bridges in British Columbia (BC), which could help in the decision-making process for seismic upgrade. This study focuses on developing seismic fragility curves for typical multi-span continuous concrete girder bridges in BC. Ground motions compatible with the seismic hazard were used as input excitations for vulnerability assessment. Uncertainties in material and geometric properties were considered to represent the bridges with similar structural characteristics and construction period. The fragility of the bridge is largely attributable to the fragilities of the columns, and to a lesser extent, the abutment and bearing components. The results of this study show that, although not very significant, the soil–structure interaction has some effect on the component fragility where this effect is not very significant at the bridge system level.