Scots pine provenance affects the emission rate and chemical composition of volatile organic compounds of forest floor

2018 ◽  
Vol 48 (11) ◽  
pp. 1373-1381 ◽  
Author(s):  
Minna Kivimäenpää ◽  
Juha-Matti Markkanen ◽  
Rajendra P. Ghimire ◽  
Toini Holopainen ◽  
Martti Vuorinen ◽  
...  

Scots pine (Pinus sylvestris L.) is an important source of biogenic volatile organic compounds (BVOCs) in the boreal zone. BVOC emission rate and profile affect air quality, climate forcing, plant stress tolerance, and thus the growing conditions of forests. BVOC emission profile of shoots and forest floor, as well as emission rates from forest floor, were studied in a latitudinal provenance experiment with 19-year-old Scots pine common garden in Central Finland. The provenances studied were Saaremaa (SAA, 58°22′), Korpilahti (KOR, 62°0′), Suomussalmi (SUO, 65°10′), and Muonio (MUO, 67°56′). A chemotype with high proportion of Δ-3-carene, terpinolene, sabinene, γ-terpinene, and α-terpinene was significantly more common for the southern SAA than the northern SUO and MUO provenances. A chemotype with high proportion of α-pinene, β-pinene, limonene, and myrcene was more common in the three northernmost provenances. The main compounds emitted by forest floor were α-pinene, Δ-3-carene, and camphene. Similarly to shoot emissions, forest floor emissions from SAA had highest proportion of Δ-3-carene. Average total VOC emission rate from forest floor was 50 μg·m−2·h−1 at the end of August. Total emission rates were 65% higher in KOR than in MUO. High emission rates were explained by the high amount of decomposing needle litter and low moss coverage.

2010 ◽  
Vol 10 (11) ◽  
pp. 28565-28633
Author(s):  
K. A. McKinney ◽  
B. H. Lee ◽  
A. Vasta ◽  
T. V. Pho ◽  
J. W. Munger

Abstract. Fluxes of biogenic volatile organic compounds, including isoprene, monoterpenes, and oxygenated VOCs measured above a mixed forest canopy in western Massachusetts during the 2005 and 2007 growing seasons are reported. Measurements were made using proton transfer reaction mass spectrometry (PTR-MS) and converted to fluxes using the disjunct eddy covariance technique. Isoprene was by far the predominant BVOC emitted at this site, with summer mid-day average fluxes of 5.3 and 4.4 mg m−2 h−1 in 2005 and 2007, respectively. In comparison, mid-day average fluxes of monoterpenes were 0.21 and 0.15 mg m−2 h−1 in each of these years. On short times scales (days), the diel pattern in emission rate compared well with a standard emission algorithm for isoprene. The general shape of the seasonal cycle and the observed decrease in isoprene emission rate in early September was, however, not well captured by the model. Monoterpene emission rates exhibited dependence on light as well as temperature, as determined from the improved fit to the observations obtained by including a light-dependent term in the model. The mid-day average flux of methanol from the canopy was 0.14 mg m−2 h−1 in 2005 and 0.19 mg m−2 h−1 in 2007, but the maximum flux was observed in spring (29 May 2007), when the flux reached 1.0 mg m−2 h−1. This observation is consistent with enhanced methanol production during leaf expansion. Summer mid-day fluxes of acetone were 0.15 mg m−2 h−1 during a short period in 2005, but only 0.03 mg m−2 h−1 averaged over 2007. Episodes of negative fluxes of oxygenated VOCs, particularly acetone, were observed periodically, especially in 2007. Thus, deposition within the canopy could help explain the low season-averaged flux of acetone in 2007. Fluxes of species of biogenic origin at mass-to-charge (m/z) ratios of 73 (0.05 mg m−2 h−1 in 2005; 0.03 mg m−2 h−1 in 2007) and 153 (5 μg m−2 h−1 in 2007), possibly corresponding to methyl ethyl ketone and an oxygenated terpene, respectively, were also observed.


2011 ◽  
Vol 11 (10) ◽  
pp. 4807-4831 ◽  
Author(s):  
K. A. McKinney ◽  
B. H. Lee ◽  
A. Vasta ◽  
T. V. Pho ◽  
J. W. Munger

Abstract. Fluxes of biogenic volatile organic compounds, including isoprene, monoterpenes, and oxygenated VOCs measured above a mixed forest canopy in central Massachusetts during the 2005 and 2007 growing seasons are reported. Mixing ratios were measured using proton transfer reaction mass spectrometry (PTR-MS) and fluxes computed by the disjunct eddy covariance technique. Isoprene was by far the predominant BVOC emitted at this site, with summer mid-day average fluxes of 5.3 and 4.4 mg m−2 hr−1 in 2005 and 2007, respectively. In comparison, mid-day average fluxes of monoterpenes were 0.21 and 0.15 mg m−2 hr−1 in each of these years. On short times scales (days), the diel pattern in emission rate compared well with a standard emission algorithm for isoprene. The general shape of the seasonal cycle and the observed decrease in isoprene emission rate in early September was, however, not well captured by the model. Monoterpene emission rates exhibited dependence on light as well as temperature, as determined from the improved fit to the observations obtained by including a light-dependent term in the model. The mid-day average flux of methanol from the canopy was 0.14 mg m−2 hr−1 in 2005 and 0.19 mg m−2 hr−1 in 2007, but the maximum flux was observed in spring (29 May 2007), when the flux reached 1.0 mg m−2 hr−1. This observation is consistent with enhanced methanol production during leaf expansion. Summer mid-day fluxes of acetone were 0.15 mg m−2 hr−1 during a short period in 2005, but only 0.03 mg m−2 h−1 averaged over 2007. Episodes of negative fluxes of oxygenated VOCs, particularly acetone, were observed periodically, especially in 2007. Thus, deposition within the canopy could help explain the low season-averaged flux of acetone in 2007. Fluxes of species of biogenic origin at mass-to-charge ($m/z$) ratios of 73 (0.05 mg m−2 hr−1 in 2005; 0.03 mg m−2 hr−1 in 2007) and 153 (5 μg m−2 hr−1 in 2007), possibly corresponding to methyl ethyl ketone and an oxygenated terpene or methyl salicylate, respectively, were also observed.


2010 ◽  
Vol 44 (30) ◽  
pp. 3651-3659 ◽  
Author(s):  
Jaana Bäck ◽  
Hermanni Aaltonen ◽  
Heidi Hellén ◽  
Maija K. Kajos ◽  
Johanna Patokoski ◽  
...  

2012 ◽  
Vol 9 (4) ◽  
pp. 1291-1300 ◽  
Author(s):  
S. Haapanala ◽  
H. Hakola ◽  
H. Hellén ◽  
M. Vestenius ◽  
J. Levula ◽  
...  

Abstract. Volatile organic compounds (VOCs) including terpenoids are emitted into the atmosphere from various natural sources. Damaging the plant tissue is known to strongly increase their monoterpene release. We measured the terpenoid emissions caused by timber felling, i.e. those from stumps and logging residue. The emissions from stumps were studied using enclosures and those from the whole felling area using an ecosystem-scale micrometeorological method, disjunct eddy accumulation (DEA). The compounds analyzed were isoprene, monoterpenes and sesquiterpenes. Strong emissions of monoterpenes were measured from both the stumps and from the whole felling area. The emission rate decreased rapidly within a few months after the logging. In addition to fresh logging residue, the results suggest also other strong monoterpene sources may be present in the felling area. These could include pre-existing litter, increased microbial activity and remaining undergrowth. In order to evaluate the possible importance of monoterpenes emitted annually from cut Scots pine forests in Finland, we conducted a rough upscaling calculation. The resulting monoterpene release was approximated to be on the order of 15 kilotonnes per year, which corresponds to about one tenth of the monoterpene release from intact forests in Finland.


2010 ◽  
Vol 10 (17) ◽  
pp. 8391-8412 ◽  
Author(s):  
B. Langford ◽  
P. K. Misztal ◽  
E. Nemitz ◽  
B. Davison ◽  
C. Helfter ◽  
...  

Abstract. As part of the OP3 field study of rainforest atmospheric chemistry, above-canopy fluxes of isoprene, monoterpenes and oxygenated volatile organic compounds were made by virtual disjunct eddy covariance from a South-East Asian tropical rainforest in Malaysia. Approximately 500 hours of flux data were collected over 48 days in April–May and June–July 2008. Isoprene was the dominant non-methane hydrocarbon emitted from the forest, accounting for 80% (as carbon) of the measured emission of reactive carbon fluxes. Total monoterpene emissions accounted for 18% of the measured reactive carbon flux. There was no evidence for nocturnal monoterpene emissions and during the day their flux rate was dependent on both light and temperature. The oxygenated compounds, including methanol, acetone and acetaldehyde, contributed less than 2% of the total measured reactive carbon flux. The sum of the VOC fluxes measured represents a 0.4% loss of daytime assimilated carbon by the canopy, but atmospheric chemistry box modelling suggests that most (90%) of this reactive carbon is returned back to the canopy by wet and dry deposition following chemical transformation. The emission rates of isoprene and monoterpenes, normalised to 30 °C and 1000 μmol m−2 s−1 PAR, were 1.6 mg m−2 h−1 and 0.46mg m−2 h−1 respectively, which was 4 and 1.8 times lower respectively than the default value for tropical forests in the widely-used MEGAN model of biogenic VOC emissions. This highlights the need for more direct canopy-scale flux measurements of VOCs from the world's tropical forests.


2020 ◽  
Vol 111 ◽  
pp. 131-20
Author(s):  
Martyna Dyrwal ◽  
Piotr Borysiuk

Selected problems concerning volatile organic compounds emission reduction from thick-veneer pine plywood. The paper presents results of research conducted on volatile organic compounds emissions, considering two different production parameter sets for thick-veneer pine plywood, manufactured in industrial conditions. Both types of plywood were produced from raw wood material, which was hydrothermally treated under two different variants of parameters (I – 47˚C, 19 h; II – 55˚C, 24 h). Based on the results it was stated that severe hydrothermal treatment of raw wood material (longer soaking time, higher temperature) had impact on reduction of plywood VOC emission rates. Main VOCs emitted from pine plywood were monoterpenes and carbonyl compounds. Of the monoterpenes, α-pinene and 3-carene had the highest emission. Of the carbonyl group of compounds, the highest emission had hexanal and caproic acid.


2020 ◽  
Author(s):  
Ralf Staebler ◽  
Samar Moussa ◽  
Yuan You ◽  
Hayley Hung ◽  
Maryam Moradi ◽  
...  

<p>Canada’s Oil Sands Region in northern Alberta contains the world’s largest deposits of commercially exploited bitumen. Extraction of synthetic crude oil from these deposits is a water intensive process, requiring large ponds for water recycling and/or final storage of tailings, already covering a total of over 100 km<sup>2</sup> of liquid surface area in the Athabasca Oil sands. The primary extraction tailings ponds primarily contain sand, silt, clay and unrecovered bitumen, while a few secondary extraction ponds also receive solvents and inorganic and organic by-products of the extraction process. Fugitive emissions of pollutants from these ponds to the atmosphere may therefore be a concern, but until recently, data on emission rates for many pollutants, other than a few reported under regulatory compliance monitoring, were sparse. We present here the results from a comprehensive field campaign to quantify the emissions from a secondary extraction pond to the atmosphere of 68 volatile organic compounds (VOCs), 22 polycyclic aromatic compounds (PACs), 8 reduced sulfur compounds as well as methane, carbon dioxide and ammonia. Three micrometeorological flux methods (eddy covariance, vertical gradients and inverse dispersion modeling) were evaluated for methane fluxes to ensure their mutual comparability. Methane and carbon dioxide fluxes were similar to previous results based on flux chamber measurements. Emission rates for 12 PACs, alkanes and aromatic VOCs, several sulfur species, and ammonia were found to be significant. PACs were dominated by methyl naphthalenes and phenanthrenes, while diethylsulfide and  and n-heptane were the dominant reduced sulfur and VOC species, respectively. The role of these previously unavailable emission rates in regional pollutant budgets will be discussed.</p>


Sign in / Sign up

Export Citation Format

Share Document