scholarly journals Assessing responses of Betula papyrifera to climate variability in a remnant population along the Niobrara River Valley in Nebraska, U.S.A., through dendroecological and remote-sensing techniques

2019 ◽  
Vol 49 (5) ◽  
pp. 423-433 ◽  
Author(s):  
E. Bumann ◽  
T. Awada ◽  
B. Wardlow ◽  
M. Hayes ◽  
J. Okalebo ◽  
...  

Remnant populations of Betula papyrifera Marshall have persisted in the Great Plains after the Wisconsin Glaciation along the Niobrara River Valley, Nebraska. Population health has declined in recent years, which has been hypothesized to be due to climate change. We used dendrochronological techniques to assess the response of B. papyrifera to microclimate (1950–2014) and the normalized difference vegetation index (NDVI) derived from satellite imagery (Landsat 5 TM (1985–2011) and MODIS (2000–2014)) as a proxy for population health. Growing-season streamflow and precipitation were positively correlated with raw and standardized tree-ring widths and basal area increment increase. Increasing winter and spring temperatures were unfavorable for tree growth, while increasing summer temperatures were favorable in the absence of drought. The strongest predictor for standardized tree rings was the Palmer Drought Severity Index, suggesting that B. papyrifera is highly responsive to a combination of temperature and water availability. The NDVI from the vegetation community was positively correlated with standardized tree-ring growth, indicating the potential of these techniques to be used as a proxy for ex situ monitoring of B. papyrifera. These results aid in forecasting the dynamics of the species in the face of climate variability and change in both remnant populations and across its current distribution in northern latitudes of North America.

Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 241
Author(s):  
Ruoshi Liu ◽  
Yi Song ◽  
Yu Liu ◽  
Xuxiang Li ◽  
Huiming Song ◽  
...  

Vegetation coverage is very important in terrestrial ecosystems and climate systems. However, the observational record of the normalized difference vegetation index (NDVI), which started in the 1980s when satellites became widely used, is too short to investigate the history of variation in vegetation coverage beyond the modern observation period. Here, we present a 189 y vegetation coverage series based on a total of 349 Mongolian pine (Pinus sylvestris var. mongolica Litv) cores from seven locations from the central–western Da Hinggan Mountains (CW–DHM), northeastern China. We found a significant relationship between tree-ring width and the regional cumulative normalized difference vegetation index (CNDVI). The correlation between the ring-width chronology and the regional June–July CNDVI (CNDVIJJ) was significant, with r = 0.68 (n = 32, p < 0.001) and an explained variance of 45.8% (44.0% after the adjustment for the loss of the degree of freedom). On this basis, we designed a transfer function to reconstruct the CNDVIJJ for the CW–DHM region from 1825 to 2013 CE (Common Era). During the last 189 years, there were 28 years with high CNDVIJJ values, and another 28 years with low values. We also observed CNDVIJJ fluctuations at the inter-annual and decadal time scales, including eight low value periods and nine high value periods. Based on our analysis, the variation in CNDVI is associated with climatic factors, such as temperature, precipitation and the Palmer Drought Severity Index (PDSI), which combines both temperature and precipitation. From 1950 to 2002 CE, the CNDVI showed a noticeable decreasing trend in the CW–DHM region, whereas after 2003 CE, the CNDVI exhibited an apparent increase, which has also been observed in southern Central Siberia, eastern Mongolia and northeastern and eastern China, indicating that the CNDVI change in the CW–DHM is related to climate change in the local region and in some parts of Asia.


2021 ◽  
Vol 13 (9) ◽  
pp. 1618
Author(s):  
Melakeneh G. Gedefaw ◽  
Hatim M. E. Geli ◽  
Temesgen Alemayehu Abera

Rangelands provide significant socioeconomic and environmental benefits to humans. However, climate variability and anthropogenic drivers can negatively impact rangeland productivity. The main goal of this study was to investigate structural and productivity changes in rangeland ecosystems in New Mexico (NM), in the southwestern United States of America during the 1984–2015 period. This goal was achieved by applying the time series segmented residual trend analysis (TSS-RESTREND) method, using datasets of the normalized difference vegetation index (NDVI) from the Global Inventory Modeling and Mapping Studies and precipitation from Parameter elevation Regressions on Independent Slopes Model (PRISM), and developing an assessment framework. The results indicated that about 17.6% and 12.8% of NM experienced a decrease and an increase in productivity, respectively. More than half of the state (55.6%) had insignificant change productivity, 10.8% was classified as indeterminant, and 3.2% was considered as agriculture. A decrease in productivity was observed in 2.2%, 4.5%, and 1.7% of NM’s grassland, shrubland, and ever green forest land cover classes, respectively. Significant decrease in productivity was observed in the northeastern and southeastern quadrants of NM while significant increase was observed in northwestern, southwestern, and a small portion of the southeastern quadrants. The timing of detected breakpoints coincided with some of NM’s drought events as indicated by the self-calibrated Palmar Drought Severity Index as their number increased since 2000s following a similar increase in drought severity. Some breakpoints were concurrent with some fire events. The combination of these two types of disturbances can partly explain the emergence of breakpoints with degradation in productivity. Using the breakpoint assessment framework developed in this study, the observed degradation based on the TSS-RESTREND showed only 55% agreement with the Rangeland Productivity Monitoring Service (RPMS) data. There was an agreement between the TSS-RESTREND and RPMS on the occurrence of significant degradation in productivity over the grasslands and shrublands within the Arizona/NM Tablelands and in the Chihuahua Desert ecoregions, respectively. This assessment of NM’s vegetation productivity is critical to support the decision-making process for rangeland management; address challenges related to the sustainability of forage supply and livestock production; conserve the biodiversity of rangelands ecosystems; and increase their resilience. Future analysis should consider the effects of rising temperatures and drought on rangeland degradation and productivity.


2019 ◽  
Vol 11 (6) ◽  
pp. 724 ◽  
Author(s):  
Simon Measho ◽  
Baozhang Chen ◽  
Yongyut Trisurat ◽  
Petri Pellikka ◽  
Lifeng Guo ◽  
...  

There is a growing concern over change in vegetation dynamics and drought patterns with the increasing climate variability and warming trends in Africa, particularly in the semiarid regions of East Africa. Here, several geospatial techniques and datasets were used to analyze the spatio-temporal vegetation dynamics in response to climate (precipitation and temperature) and drought in Eritrea from 2000 to 2017. A pixel-based trend analysis was performed, and a Pearson correlation coefficient was computed between vegetation indices and climate variables. In addition, vegetation condition index (VCI) and standard precipitation index (SPI) classifications were used to assess drought patterns in the country. The results demonstrated that there was a decreasing NDVI (Normalized Difference Vegetation Index) slope at both annual and seasonal time scales. In the study area, 57.1% of the pixels showed a decreasing annual NDVI trend, while the significance was higher in South-Western Eritrea. In most of the agro-ecological zones, the shrublands and croplands showed decreasing NDVI trends. About 87.16% of the study area had a positive correlation between growing season NDVI and precipitation (39.34%, p < 0.05). The Gash Barka region of the country showed the strongest and most significant correlations between NDVI and precipitation values. The specific drought assessments based on VCI and SPI summarized that Eritrea had been exposed to recurrent droughts of moderate to extreme conditions during the last 18 years. Based on the correlation analysis and drought patterns, this study confirms that low precipitation was mainly attributed to the slowly declining vegetation trends and increased drought conditions in the semi-arid region. Therefore, immediate action is needed to minimize the negative impact of climate variability and increasing aridity in vegetation and ecosystem services.


2019 ◽  
Vol 19 (6) ◽  
pp. 1189-1213 ◽  
Author(s):  
Sergio M. Vicente-Serrano ◽  
Cesar Azorin-Molina ◽  
Marina Peña-Gallardo ◽  
Miquel Tomas-Burguera ◽  
Fernando Domínguez-Castro ◽  
...  

Abstract. Drought is a major driver of vegetation activity in Spain, with significant impacts on crop yield, forest growth, and the occurrence of forest fires. Nonetheless, the sensitivity of vegetation to drought conditions differs largely amongst vegetation types and climates. We used a high-resolution (1.1 km) spatial dataset of the normalized difference vegetation index (NDVI) for the whole of Spain spanning the period from 1981 to 2015, combined with a dataset of the standardized precipitation evapotranspiration index (SPEI) to assess the sensitivity of vegetation types to drought across Spain. Specifically, this study explores the drought timescales at which vegetation activity shows its highest response to drought severity at different moments of the year. Results demonstrate that – over large areas of Spain – vegetation activity is controlled largely by the interannual variability of drought. More than 90 % of the land areas exhibited statistically significant positive correlations between the NDVI and the SPEI during dry summers (JJA). Nevertheless, there are some considerable spatio-temporal variations, which can be linked to differences in land cover and aridity conditions. In comparison to other climatic regions across Spain, results indicate that vegetation types located in arid regions showed the strongest response to drought. Importantly, this study stresses that the timescale at which drought is assessed is a dominant factor in understanding the different responses of vegetation activity to drought.


2020 ◽  
Author(s):  
Nikolaus Obojes ◽  
Jennifer Klemm ◽  
Ruth Sonnenschein ◽  
Francesco Giammarchi ◽  
Giustino Tonon ◽  
...  

&lt;p&gt;To prevent further erosion of pastures along the south slopes of the Vinschgau/Val Venosta (South Tyrol/Italy) about 900 ha of non-native black pine (Pinus nigra) have been afforested there between 1900 and the 1960s. This drought-tolerant Mediterranean species was supposed to be able to cope with the dry climate at degraded soils in the inner-alpine dry valley. Nevertheless, black pine in the Vinschgau has been affected by reoccurring tree vitality decline and diebacks in the last 20 years linked to repeated droughts and heat waves. Observing growth trends via tree ring analysis is usually restricted to single stands. On the other hand, remote sensing data to track tree vitality was not available in sufficient spatial and temporal resolution to be applied to complex mountain terrain until recently. This has changed with the launch of the Sentinel-2 A and B satellites in 2015 and 2017 with a spatial resolution of 10 to 20 m and a revisiting period of 5 days. To analyse the accordance of remote sensing-based vegetation indices to tree-ring based growth data, we compared twelve sites across the Vinschgau/Val Venosta with a differing degree of vitality loss in 2017 for a four-year period from 2015 to 2018. In general, less vital sites were located at lower elevation and on steeper slopes. Radial tree growth was positively correlated to spring precipitation and strongly decreased during earlier hot and dry years such as 1995 and 2003. We found high and statistically significant correlations between site-average basal area increment as well as tree ring width indices and multiple vegetation indices (Normalized Difference Vegetation Index NDVI, Green Normalized Difference Vegetation Index GNDVI, Normalized Difference Infrared Index NDII, Moisture Stress Index MSI) especially for the dry 2017 growing season and the 2018 recovery year, which had large gradients in tree vitality between sites. Overall, these results show that remote sensing-based vegetation indices can be used to scale up stand level growth data also in complex mountain terrain.&lt;/p&gt;


Author(s):  
James S. Aber ◽  
Juliet Wallace ◽  
Matthew C. Nowak

Characteristics and temporal changes in forest cover from 1987 to 1997 were documented on the basis of remote sensing for two study forests at Fort Leavenworth, northeastern Kansas. Eight Landsat 5 Thematic Mapper (TM) datasets from the month of July cover the study period, which included a major drought in 1988-1989 and flooding along the Missouri River in 1993. Other data sources included kite aerial photographs, digital orthophotos, tree-ring cores, climatic records, and ground observations. Three study areas were evaluated from Landsat TM datasets: (1) the entire Fort Leavenworth area; (2) an upland, hardwood forest composed mainly of oaks; and (3) a bottomland, softwood forest dominated by cottonwood. Normalized Difference Vegetation Index (NDVI) values were derived from these three study sets and subjected to image differencing and principal-component analysis. The TM band 5:4 ratio was also analyzed for the two study forests. Values and trends derived from Landsat imagery were compared to data on tree-ring growth in upland oaks and regional climatic events. Annual growth of tree rings in upland oaks is tied closely to precipitation and the Palmer Drought Severity Index (PDSI); however, changes in NDVI values lag one to two years behind the onset of climatic events, particularly drought episodes. During the first year of drought (1988), vegetation cover in the upland and bottomland forests reacted in different ways: with a slight decline in the upland forest and a slight increase in the bottomland forest. The increased vegetation in the bottomland forest presumably resulted from more understory growth in dry hollows and potholes. In the second year of drought (1989), both forests suffered a marked decline in vegetation cover. NDVI values reached their minima for all categories (whole area, upland forest, and bottomland forest) in 1990, even though precipitation and tree-ring growth increased substantially that year. We conclude that changes in Landsat-derived NDVI values are out of phase with climatic events and variations in tree-ring growth for both upland and bottomland forests in northeastern Kansas and northwestern Missouri. Overall change (1987 to 1997) for NDVI values is down slightly for all categories of evaluation. This probably reflects reduced precipitation throughout the study period compared to the long-term average. Changes in vegetation took place mainly on the forest margins. Such changes are thought to result from microclimatic stress at forest edges. The bottomland study forest also was impacted by severe flooding in 1993. Routine human activities may have resulted in minor changes along the margins of both study forests. The bottomland forest was affected by intentional burning of the adjacent prairie in April 2000. Cottonwood trees at the forest edge were killed or injured by the prairie fire, which penetrated the forest understory some distance.


Author(s):  
Malak Henchiri ◽  
Qi Liu ◽  
Bouajila Essifi ◽  
Shahzad Ali ◽  
Wilson Kalisa ◽  
...  

North and West Africa are the most vulnerable regions to drought, due to the high variation in monthly precipitation. An accurate and efficient monitoring of drought is essential. In this study, we use TRMM data with remote sensing tools for effective monitoring of drought. The Drought Severity Index (DSI), Temperature Vegetation Drought Index (TVDI), Normalized Difference Vegetation Index (NDVI), and Normalized Vegetation Supply Water Index (NVSWI) are more useful for monitoring the drought over North and West Africa. To classify the areas affected by drought, we used the TRMM spatial maps to verify the TVDI, DSI and NVSWI indexes derived from MODIS. The DSI, TVDI, NVSWI and Monthly Precipitation Anomaly (NPA) indexes with the employ of MODIS-derived ET/PET and NDVI were chosen for monitoring the drought in the study area. The seasonal spatial correlation between the DSI, NPA, NVWSI, NDVI, TVDI and TCI indicates that NVSWI, NDVI and DSI present an excellent monitor of drought indexes. The change trend of drought from 2002 to 2018 was also characterized. The frequency of drought showed a decrease during this period.


2021 ◽  
Vol 13 (18) ◽  
pp. 3693
Author(s):  
Hone-Jay Chu ◽  
Regita Faridatunisa Wijayanti ◽  
Lalu Muhamad Jaelani ◽  
Hui-Ping Tsai

Drought monitoring is essential to detect the presence of drought, and the comprehensive change of drought conditions on a regional or global scale. This study used satellite precipitation data from the Tropical Rainfall Measuring Mission (TRMM), but refined the data for drought monitoring in Java, Indonesia. Firstly, drought analysis was conducted to establish the standardized precipitation index (SPI) of TRMM data for different durations. Time varying SPI spatial downscaling was conducted by selecting the environmental variables, normalized difference vegetation index (NDVI), and land surface temperature (LST) that were highly correlated with precipitation because meteorological drought was associated with vegetation and land drought. This study used time-dependent spatial regression to build the relation among original SPI, auxiliary variables, i.e., NDVI and LST. Results indicated that spatial downscaling was better than nonspatial downscaling (overall RMSEs: 0.25 and 0.46 in spatial and nonspatial downscaling). Spatial downscaling was more suitable for heterogeneous SPI, particularly in the transition time (R: 0.863 and 0.137 in June 2019 for spatial and nonspatial models). The fine resolution (1 km) SPI can be composed of the environmental data. The fine-resolution SPI captured a similar trend of the original SPI. Furthermore, the detailed SPI maps can be used to understand the spatio-temporal pattern of drought severity.


2019 ◽  
Vol 11 (24) ◽  
pp. 2902 ◽  
Author(s):  
Chunyu Dong ◽  
Glen MacDonald ◽  
Gregory S. Okin ◽  
Thomas W. Gillespie

A combination of drought and high temperatures (“global-change-type drought”) is projected to become increasingly common in Mediterranean climate regions. Recently, Southern California has experienced record-breaking high temperatures coupled with significant precipitation deficits, which provides opportunities to investigate the impacts of high temperatures on the drought sensitivity of Mediterranean climate vegetation. Responses of different vegetation types to drought are quantified using the Moderate Resolution Imaging Spectroradiometer (MODIS) data for the period 2000–2017. The contrasting responses of the vegetation types to drought are captured by the correlation and regression coefficients between Normalized Difference Vegetation Index (NDVI) anomalies and the Palmer Drought Severity Index (PDSI). A novel bootstrapping regression approach is used to decompose the relationships between the vegetation sensitivity (NDVI–PDSI regression slopes) and the principle climate factors (temperature and precipitation) associated with the drought. Significantly increased sensitivity to drought in warmer locations indicates the important role of temperature in exacerbating vulnerability; however, spatial precipitation variations do not demonstrate significant effects in modulating drought sensitivity. Based on annual NDVI response, chaparral is the most vulnerable community to warming, which will probably be severely affected by hotter droughts in the future. Drought sensitivity of coastal sage scrub (CSS) is also shown to be very responsive to warming in fall and winter. Grassland and developed land will likely be less affected by this warming. The sensitivity of the overall vegetation to temperature increases is particularly concerning, as it is the variable that has had the strongest secular trend in recent decades, which is expected to continue or strengthen in the future. Increased temperatures will probably alter vegetation distribution, as well as possibly increase annual grassland cover, and decrease the extent and ecological services provided by perennial woody Mediterranean climate ecosystems as well.


Sign in / Sign up

Export Citation Format

Share Document