LuxS modulates motility and secretion of extracellular protease in fish pathogen Vibrio harveyi

Author(s):  
yaqiu Zhang ◽  
Yiqing Deng ◽  
Juan Feng ◽  
Jianmei Hu ◽  
Haoxiang Chen ◽  
...  

In this study, an in-frame deletion of the luxS gene was constructed to reveal the role of LuxS in the physiology and virulence of V. harveyi. The statistical analysis showed no significant differences in the growth ability, biofilm formation, antibiotic susceptibility, virulence by intraperitoneal injection, and the ability of V. harveyi to colonize the spleen and liver of the pearl gentian grouper between the wild-type (WT) and the luxS mutant. However, the deletion of luxS decreased the secretion of extracellular protease, while increased the ability of swimming and swarming. Simultaneously, a luxS-deleted mutant showed overproduction of lateral flagella, and an intact luxS complemented the defect. Since motility is flagella dependent, 16 of V. harveyi flagella biogenesis related genes were selected for further analysis. Based on quantitative real-time reverse transcription-PCR (qRT-PCR), the expression levels of these genes, including the polar flagella genes flaB, flhA, flhF, flhB, flhF, fliS, and flrA and the lateral flagella genes flgA, flgB, fliE, fliF, lafA, lafK, and motY, were significantly up-regulated in the ΔluxS: pMMB207 (ΔluxS+) strain as compared with the V. harveyi 345: pMMB207 (WT+) and C-ΔluxS strains during the early, mid-exponential, and stationary growth phase.

Pathogens ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 774
Author(s):  
Virginio Cepas ◽  
Victoria Ballén ◽  
Yaiza Gabasa ◽  
Miriam Ramírez ◽  
Yuly López ◽  
...  

Current Escherichia coli antibiofilm treatments comprise a combination of antibiotics commonly used against planktonic cells, leading to treatment failure. A better understanding of the genes involved in biofilm formation could facilitate the development of efficient and specific new antibiofilm treatments. A total of 2578 E. coli mutants were generated by transposon insertion, of which 536 were analysed in this study. After sequencing, Tn263 mutant, classified as low biofilm-former (LF) compared to the wild-type (wt) strain (ATCC 25922), showed an interruption in the purL gene, involved in the de novo purine biosynthesis pathway. To elucidate the role of purL in biofilm formation, a knockout was generated showing reduced production of curli fibres, leading to an impaired biofilm formation. These conditions were restored by complementation of the strain or addition of exogenous inosine. Proteomic and transcriptional analyses were performed to characterise the differences caused by purL alterations. Thirteen proteins were altered compared to wt. The corresponding genes were analysed by qRT-PCR not only in the Tn263 and wt, but also in clinical strains with different biofilm activity. Overall, this study suggests that purL is essential for biofilm formation in E. coli and can be considered as a potential antibiofilm target.


2021 ◽  
Vol 22 (9) ◽  
pp. 4607
Author(s):  
Chang-Lin Chen ◽  
Ying-Chieh Chen ◽  
Wei-Ling Huang ◽  
Steven Lin ◽  
Rimantas Daugelavičius ◽  
...  

Mitochondria are dynamic organelles as they continuously undergo fission and fusion. These dynamic processes conduct not only mitochondrial network morphology but also activity regulation and quality control. Saccharomyces cerevisiae has a remarkable capacity to resist stress from dehydration/rehydration. Although mitochondria are noted for their role in desiccation tolerance, the mechanisms underlying these processes remains obscure. Here, we report that yeast cells that went through stationary growth phase have a better survival rate after dehydration/rehydration. Dynamic defective yeast cells with reduced mitochondrial genome cannot maintain the mitochondrial activity and survival rate of wild type cells. Our results demonstrate that yeast cells balance mitochondrial fusion and fission according to growth conditions, and the ability to adjust dynamic behavior aids the dehydration resistance by preserving mitochondria.


2019 ◽  
Vol 85 (14) ◽  
Author(s):  
Sally Demirdjian ◽  
Hector Sanchez ◽  
Daniel Hopkins ◽  
Brent Berwin

ABSTRACTPseudomonas aeruginosais a bacterial pathogen that causes severe chronic infections in immunocompromised individuals. This bacterium is highly adaptable to its environments, which frequently select for traits that promote bacterial persistence. A clinically significant temporal adaptation is the formation of surface- or cell-adhered bacterial biofilms that are associated with increased resistance to immune and antibiotic clearance. Extensive research has shown that bacterial flagellar motility promotes formation of such biofilms, whereupon the bacteria subsequently become nonmotile. However, recent evidence shows that antibiotic-tolerant nonattached bacterial aggregates, distinct from surface-adhered biofilms, can form, and these have been reported in the context of lung infections, otitis media, nonhealing wounds, and soft tissue fillers. It is unclear whether the same bacterial traits are required for aggregate formation as for biofilm formation. In this report, using isogenic mutants, we demonstrate thatP. aeruginosaaggregates in liquid cultures are spontaneously formed independent of bacterial flagellar motility and independent of an exogenous scaffold. This contrasts with the role of the flagellum to initiate surface-adhered biofilms. Similarly to surface-attached biofilms, these aggregates exhibit increased antibiotic tolerance compared to planktonic cultures. These findings provide key insights into the requirements for aggregate formation that contrast with those for biofilm formation and that may have relevance for the persistence and dissemination of nonmotile bacteria found within chronic clinical infections.IMPORTANCEIn this work, we have investigated the role of bacterial motility with regard to antibiotic-tolerant bacterial aggregate formation. Previous work has convincingly demonstrated thatP. aeruginosaflagellar motility promotes the formation of surface-adhered biofilms in many systems. In contrast, aggregate formation byP. aeruginosawas observed for nonmotile but not for motile cells in the presence of an exogenous scaffold. Here, we demonstrate that both wild-typeP. aeruginosaand mutants that genetically lack motility spontaneously form antibiotic-tolerant aggregates in the absence of an exogenously added scaffold. Additionally, we also demonstrate that wild-type (WT) and nonmotileP. aeruginosabacteria can coaggregate, shedding light on potential physiological interactions and heterogeneity of aggregates.


mBio ◽  
2019 ◽  
Vol 10 (4) ◽  
Author(s):  
You-Chul Jung ◽  
Mi-Ae Lee ◽  
Kyu-Ho Lee

ABSTRACT The pathogenic bacterium Vibrio vulnificus exhibits the ability to form biofilm, for which initiation is dependent upon swimming motility by virtue of a polar flagellum. The filament of its flagellum is composed of multiple flagellin subunits, FlaA, -B, -C, and -D. In V. vulnificus genomes, however, open reading frames (ORFs) annotated by FlaE and -F are also present. Although neither FlaE nor FlaF is involved in filament formation and cellular motility, they are well expressed and secreted to the extracellular milieu through the secretion apparatus for flagellar assembly. In the extrapolymeric matrix of V. vulnificus biofilm, significant levels of FlaEF were detected. Mutants defective in both flaE and flaF formed significantly decreased biofilms compared to the wild-type biofilm. Thus, the potential role of FlaEF during the biofilm-forming process was investigated by exogenous addition of recombinant FlaEF (rFlaEF) to the biofilm assays. The added rFlaE and rFlaF were predominantly incorporated into the biofilm matrix formed by the wild type. However, biofilms formed by a mutant defective in exopolysaccharide (EPS) biosynthesis were not affected by added FlaEF. These results raised a possibility that FlaEF specifically interact with EPS within the biofilm matrix. In vitro pulldown assays using His-tagged rFlaEF or rFlaC revealed the specific binding of EPS to rFlaEF but not to rFlaC. Taken together, our results demonstrate that V. vulnificus FlaEF, flagellin-homologous proteins (FHPs), are crucial for biofilm formation by directly interacting with the essential determinant for biofilm maturation, EPS. Further analyses performed with other pathogenic Vibrio species demonstrated both the presence of FHPs and their important role in biofilm formation. IMPORTANCE Flagellar filaments of the pathogenic Vibrio species, including V. vulnificus, V. parahaemolyticus, and V. cholerae, are composed of multiple flagellin subunits. In their genomes, however, there are higher numbers of the ORFs encoding flagellin-like proteins than the numbers of flagellin subunits required for filament assembly. Since these flagellin-homologous proteins (FHPs) are well expressed and excreted to environments via a flagellin transport channel, their extracellular role in the pathogenic Vibrio has been enigmatic. Their biological significance, which is not related with flagellar functions, has been revealed to be in maturation of biofilm structures. Among various components of the extracellular polymeric matrix produced in the V. vulnificus biofilms, the exopolysaccharides (EPS) are dominant constituents and crucial in maturation of biofilms. The enhancing role of the V. vulnificus FHPs in biofilm formation requires the presence of EPS, as indicated by highly specific interactions among two FHPs and three EPS.


Microbiology ◽  
2006 ◽  
Vol 152 (6) ◽  
pp. 1741-1750 ◽  
Author(s):  
Renjith Mathew ◽  
Raju Mukherjee ◽  
Radhakrishnan Balachandar ◽  
Dipankar Chatterji

The ω subunit, the smallest subunit of bacterial RNA polymerase, is known to be involved in maintaining the conformation of the β′ subunit and aiding its recruitment to the rest of the core enzyme assembly in Escherichia coli. It has recently been shown in Mycobacterium smegmatis, by creating a deletion mutation of the rpoZ gene encoding ω, that the physiological role of the ω subunit also includes providing physical protection to β′. Interestingly, the mutant had altered colony morphology. This paper demonstrates that the mutant mycobacterium has pleiotropic phenotypes including reduced sliding motility and defective biofilm formation. Analysis of the spatial arrangement of biofilms by electron microscopy suggests that the altered phenotype of the mutant arises from a deficiency in generation of extracellular matrix. Complementation of the mutant strain with a copy of the wild-type rpoZ gene integrated in the bacterial chromosome restored both sliding motility and biofilm formation to the wild-type state, unequivocally proving the role of ω in the characteristics observed for the mutant bacterium. Analysis of the cell wall composition demonstrated that the mutant bacterium had an identical glycopeptidolipid profile to the wild-type, but failed to synthesize the short-chain mycolic acids characteristic of biofilm growth in M. smegmatis.


2013 ◽  
Vol 13 (4) ◽  
pp. 438-451 ◽  
Author(s):  
Srisuda Pannanusorn ◽  
Bernardo Ramírez-Zavala ◽  
Heinrich Lünsdorf ◽  
Birgitta Agerberth ◽  
Joachim Morschhäuser ◽  
...  

ABSTRACT In Candida parapsilosis , biofilm formation is considered to be a major virulence factor. Previously, we determined the ability of 33 clinical isolates causing bloodstream infection to form biofilms and identified three distinct groups of biofilm-forming strains (negative, low, and high). Here, we establish two different biofilm structures among strains forming large amounts of biofilm in which strains with complex spider-like structures formed robust biofilms on different surface materials with increased resistance to fluconazole. Surprisingly, the transcription factor Bcr1, required for biofilm formation in Candida albicans and C. parapsilosis , has an essential role only in strains with low capacity for biofilm formation. Although BCR1 leads to the formation of more and longer pseudohyphae, it was not required for initial adhesion and formation of mature biofilms in strains with a high level of biofilm formation. Furthermore, an additional phenotype affected by BCR1 was the switch in colony morphology from rough to crepe, but only in strains forming high levels of biofilm. All bcr1 Δ/Δ mutants showed increased proteolytic activity and increased susceptibility to the antimicrobial peptides protamine and RP-1 compared to corresponding wild-type and complemented strains. Taken together, our results demonstrate that biofilm formation in clinical isolates of C. parapsilosis is both dependent and independent of BCR1 , but even in strains which showed a BCR1 -independent biofilm phenotype, BCR1 has alternative physiological functions.


2020 ◽  
Vol 8 (1) ◽  
pp. 70 ◽  
Author(s):  
Bhumika Shokeen ◽  
Jane Park ◽  
Emily Duong ◽  
Sonam Rambhia ◽  
Manash Paul ◽  
...  

RadD, a major adhesin of oral fusobacteria, is part of a four-gene operon encoding the small lipoprotein FAD-I and two currently uncharacterized small proteins encoded by the rapA and rapB genes. Previously, we described a role for FAD-I in the induction of human B-defensin 2 (hBD2) upon contact with oral epithelial cells. Here, we investigated potential roles for fad-I, rapA, and rapB in interspecies interaction and biofilm formation. Gene inactivation mutants were generated for each of these genes in the nucleatum and polymorphum subspecies of Fusobacterium nucleatum and characterized for their adherence to partner species, biofilm formation, and operon transcription. Binding to Streptococcus gordonii was increased in all mutant strains with Δfad-I having the most significant effect. This increased adherence was directly proportional to elevated radD transcript levels and resulted in significantly different architecture and height of the biofilms formed by Δfad-I and S. gordonii compared to the wild-type parent. In conclusion, FAD-I is important for fusobacterial interspecies interaction as its lack leads to increased production of the RadD adhesin suggesting a role of FAD-I in its regulation. This regulatory effect does not require the presence of functional RadD.


2019 ◽  
Vol 109 (11) ◽  
pp. 1869-1877
Author(s):  
Yuqiang Zhang ◽  
Guichun Wu ◽  
Ian Palmer ◽  
Bo Wang ◽  
Guoliang Qian ◽  
...  

The plant bacterial pathogen Xanthomonas oryzae pv. oryzae causes bacterial blight of rice, which is one of the most destructive rice diseases prevalent in Asia and parts of Africa. Despite many years of research, how X. oryzae pv. oryzae causes bacterial blight of rice is still not completely understood. Here, we show that the loss of the rocF gene caused a significant decrease in the virulence of X. oryzae pv. oryzae in the susceptible rice cultivar IR24. Bioinformatics analysis demonstrated that rocF encodes arginase. Quantitative real-time PCR and Western blot assays revealed that rocF expression was significantly induced by rice and arginine. The rocF deletion mutant strain showed elevated sensitivity to hydrogen peroxide, reduced extracellular polysaccharide (EPS) production, and reduced biofilm formation, all of which are important determinants for the full virulence of X. oryzae pv. oryzae, compared with the wild-type strain. Taken together, the results of this study revealed a mechanism by which a bacterial arginase is required for the full virulence of X. oryzae pv. oryzae on rice because of its contribution to tolerance to reactive oxygen species, EPS production, and biofilm formation.


2008 ◽  
Vol 191 (4) ◽  
pp. 1258-1267 ◽  
Author(s):  
Younghoon Kim ◽  
Xiaoxue Wang ◽  
Qun Ma ◽  
Xue-Song Zhang ◽  
Thomas K. Wood

ABSTRACT The roles of toxin-antitoxin (TA) systems in bacteria have been debated. Here, the role of five TA systems in regard to biofilm development was investigated (listed as toxin/antitoxin: MazF/MazE, RelE/RelB, ChpB, YoeB/YefM, and YafQ/DinJ). Although these multiple TA systems were reported previously to not impact bacterial fitness, we found that deletion of the five TA systems decreased biofilm formation initially (8 h) on three different surfaces and then increased biofilm formation (24 h) by decreasing biofilm dispersal. Whole-transcriptome profiling revealed that the deletion of the five TA systems induced expression of a single gene, yjgK, which encodes an uncharacterized protein; quantitative real-time PCR (qRT-PCR) confirmed consistent induction of this gene (at 8, 15, and 24 h). Corroborating the complex phenotype seen upon deleting the TA systems, overexpression of YjgK decreased biofilm formation at 8 h and increased biofilm formation at 24 h; deletion of yjgK also affected biofilm formation in the expected manner by increasing biofilm formation after 8 h and decreasing biofilm formation after 24 h. In addition, YjgK significantly reduced biofilm dispersal. Whole-transcriptome profiling revealed YjgK represses fimbria genes at 8 h (corroborated by qRT-PCR and a yeast agglutination assay), which agrees with the decrease in biofilm formation upon deleting the five TA systems at 8 h, as well as that seen upon overexpressing YjgK. Sand column assays confirmed that deleting the five TA systems reduced cell attachment. Furthermore, deletion of each of the five toxins increased biofilm formation at 8 h, and overexpression of the five toxins repressed biofilm formation at 8 h, a result that is opposite that of deleting all five TA systems; this suggests that complex regulation occurs involving the antitoxins. Also, the ability of the global regulator Hha to reduce biofilm formation was dependent on the presence of these TA systems. Hence, we suggest that one role of TA systems is to influence biofilm formation.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1168-1168
Author(s):  
Jerry C. Cheng ◽  
Deepa Shankar ◽  
Stanley F. Nelson ◽  
Kathleen M. Sakamoto

Abstract CREB is a nuclear transcription factor that plays an important role in regulating cellular proliferation, memory, and glucose homeostasis. We previously demonstrated that CREB is overexpressed in bone marrow cells from a subset of patients with acute leukemia at diagnosis. Furthermore, CREB overexpression is associated with an increased risk of relapse and decreased event-free survival in adult AML patients. Transgenic mice that overexpress CREB in myeloid cells developed myeloproliferative/myelodysplastic syndrome after one year. To further understand the role of CREB in leukemogenesis and in normal hematopoiesis, we employed RNA interference methods to inhibit CREB expression. To achieve sustained, CREB-specific gene knockdown in leukemia and normal hematopoietic cells, a lentiviral-based small hairpin (shRNA) approach was taken. Three CREB specific shRNAs were generated and tested for efficiency of gene knockdown in 293T cells. Knockdown efficiency approached 90 percent by Western blot analysis compared to vector alone and luciferase controls. Human myeloid leukemia cell lines, K562, TF1, and MV411, were then infected with CREB shRNA lentivirus, sorted for GFP expression, and analyzed using quantitative real time (qRT)-PCR, Western blot analysis, and growth and viability assays. Lentiviral CREB-shRNA achieved between 50 to 90 percent knockdown of CREB compared to control shRNAs at the protein and mRNA levels. To control for non-specific effects, we performed qRT-PCR analysis of the interferon response gene, OAS1, which was not upregulated in cells transduced with CREB shRNA constructs. Within 72 hours, cells transduced with CREB shRNA had decreased proliferation and survival. Similar results were obtained with murine leukemia cells (NFS60 and BA/F3 bcr-abl).To study the role of CREB in normal hematopoiesis, both primary murine and human hematopoietic cells were transduced with our shRNA constructs, and methylcellulose-based colony assays were performed. Primary hematopoietic cells infected with CREB shRNA lentivirus demonstrated a 5-fold decrease in colony number compared to control virus-infected cells (p<0.05). Bone marrow colonies consisted of myeloid progenitor cells that were mostly Mac-1+ by FACs analysis. Interestingly, there were fewer differentiated cells in the CREB shRNA transduced cells compared to vector control or wild type cells, suggesting that CREB is critical for both myeloid cell proliferation and differentiation. To study the in vivo effects of CREB knockdown on leukemia progression, we studied mice injected with BA/F3 cells that express both bcr/abl with the T315I mutation and a luciferase reporter gene. BA/F3 cells expressing the T315I mutation have a 2-fold increase in CREB overexpression compared to wild-type cells. Disease progression was monitored using bioluminescence imaging with luciferin. CREB knockdown was 90 percent after transduction and prior to injection into SCID mice. We observed improved survival of mice injected with CREB shRNA transduced BA/F3 bcr-abl (T315I) compared to vector control cells. To understand the mechanism of growth suppression resulting from CREB downregulation, we performed microarray analysis with RNA from CREB shRNA transduced K562 and TF1 cells. Several genes were downregulated using a Human Affymetrix chip. Most notable was Beclin1, a tumor suppressor gene often deleted in prostate and breast cancer that has been implicated in autophagy. Our results demonstrate that CREB is required for normal and leukemic cell proliferation both in vitro and in vivo.


Sign in / Sign up

Export Citation Format

Share Document