Nonclassical properties of the squeezing and rotating coherent state

2018 ◽  
Vol 96 (12) ◽  
pp. 1365-1372
Author(s):  
Gang Ren ◽  
Jian-ming Du ◽  
Hai-jun Yu

In this paper, we construct and investigate the nonclassical properties of the squeezing and rotating coherent state (SRCS) via a generalized squeezed operator by introducing a novel parameter r. In a particular case r = 0, SRCS reduces to the normal squeezed coherent state (SCS). The influence of r is studied in terms of squeezing and quantum statistical properties. Our results show that in the SCS not only is squeezing enhanced but also is rotated by the parameter r. Our discussion about the fidelity between SRCS and SCS shows that the fidelity values decrease with increasing parameter r. The experimental scheme for producing SRCS is also given via a self-Kerr medium and non-degenerate parametric amplifier.

1997 ◽  
Vol 11 (09n10) ◽  
pp. 399-406
Author(s):  
Norton G. de Almeida ◽  
Célia M. A. Dantas

The norder expressions for the squeezed and coherent states are derived as a natural generalization of the usual squeezed coherent and coherent states. The photon number distribution of n order of squeezed coherent states that are eigenstates of the operators [Formula: see text] is derived. The n order coherent state is a particular case of the states that we are now deriving. Some mathematical and quantum statistical properties of these states are discussed.


2010 ◽  
Vol 19 (10) ◽  
pp. 104205 ◽  
Author(s):  
Yuan Hong-Chun ◽  
Xu Xue-Xiang ◽  
Fan Hong-Yi

2020 ◽  
Vol 98 (2) ◽  
pp. 119-124 ◽  
Author(s):  
Hong-Chun Yuan ◽  
Xue-Xiang Xu ◽  
Heng-Mei Li ◽  
Ye-Jun Xu ◽  
Xiang-Guo Meng

We theoretically generate a kind of photon-catalyzed optical coherent states (PCOCSs) by heralded interference between any photons and coherent state via a non-degenerate parametric amplifier, which is also just a Laguerre polynomial excited coherent state. Based on obtaining the probability of successfully detecting them (also the normalization factor), the nonclassical properties of the PCOCSs are analytically investigated according to autocorrelation function, quadrature squeezing, and the negativity of the Wigner function. It is found that the nonclassicality depends on the amplitude of the coherent state, the catalysis photon number, and amplifier parameter. The negative volume of their Wigner function can be enlarged by increasing the catalysis photon number. These parameters may be effectively used to improve and enhance the nonclassical characteristics.


2013 ◽  
Vol 10 (07) ◽  
pp. 1350028 ◽  
Author(s):  
A. MAHDIFAR

In this paper, we generalize Schwinger realization of the 𝔰𝔲(2) algebra to construct a two-mode realization for deformed 𝔰𝔲(2) algebra on a sphere. We obtain a nonlinear (f-deformed) Schwinger realization with a deformation function corresponding to the curvature of sphere that in the flat limit tends to unity. With the use of this nonlinear two-mode algebra, we construct the associated two-mode coherent states (CSs) on the sphere and investigate their quantum entanglement. We also compare the quantum statistical properties of the two modes of the constructed CSs, including anticorrelation and antibunching effects. Particularly, the influence of the curvature of the physical space on the nonclassical properties of two modes is clarified.


2001 ◽  
Vol 15 (11) ◽  
pp. 351-357
Author(s):  
HONGYI FAN ◽  
YUE FAN ◽  
MINGZHAI SUN

By introducing a type of two-mode special squeezed coherent state, we directly derive the density matrix and partition function for a generalized nondegenerate parametric amplifier. The derivation is neat because the states make up a new, complete representation.


2012 ◽  
Vol 29 (5) ◽  
pp. 050301 ◽  
Author(s):  
Jun Zhou ◽  
Jun Song ◽  
Hao Yuan ◽  
Bo Zhang

Sign in / Sign up

Export Citation Format

Share Document