Parathyroid hypertensive factor inhibits voltage-gated K+ channels in vascular smooth muscle cells

1999 ◽  
Vol 77 (11) ◽  
pp. 860-865 ◽  
Author(s):  
Jun Ren ◽  
Lei Zhang ◽  
Christina G. Benishin
1994 ◽  
Vol 266 (1) ◽  
pp. C311-C317 ◽  
Author(s):  
M. L. Borin ◽  
R. M. Tribe ◽  
M. P. Blaustein

The effect of a rise in intracellular Na+ concentration ([Na+]cyt) on the amount of Ca2+ in intracellular stores was studied in vascular smooth muscle cells from the A7r5 line. The relative amount of stored Ca2+ was estimated in fura 2-loaded cells by the rise in cytosolic free Ca2+ concentration ([Ca2+]cyt) evoked by Ca2+ release from the sarcoplasmic reticulum (SR). To improve the detection of released Ca2+, extrusion of Ca2+ from the cytosol was minimized by using nominally Na+/Ca(2+)-free medium containing 0.5 mM La3+ [for vasoconstrictor experiments, the medium contained 0.5 mM ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid and no La3+]. Ca2+ release was triggered by thapsigargin (TG), an SR Ca(2+)-ATPase inhibitor, and by the vasoconstrictors arginine vasopressin (AVP) and serotonin (5-HT). Incubation with 1-3 mM ouabain for 20 min, which raises [Na+]cyt from 4.4 to 9.0 mM, increased "resting" [Ca2+]cyt only slightly (from 87 to 122 nM). However, ouabain greatly augmented the release of Ca2+ evoked by TG [from 639 nM (control) to 1,021 nM], by AVP (from 993 to 1,597 nM), and by 5-HT (from 559 to 1,486 nM). Ouabain-induced augmentation of TG-evoked Ca2+ release was not affected by 10 microM verapamil; this implies that the effect of ouabain was not due to Ca2+ entry through voltage-gated Ca2+ channels. The response to TG was not augmented when ouabain was applied for 20 min in Na(+)-free medium (Na+ replaced by equimolar N-methyl-D-glucamine) to prevent [Na+]cyt from rising.(ABSTRACT TRUNCATED AT 250 WORDS)


1999 ◽  
Vol 77 (11) ◽  
pp. 860-865 ◽  
Author(s):  
Jun Ren ◽  
Lei Zhang ◽  
Christina G Benishin

Parathyroid hypertensive factor (PHF) has been implicated in regulation of vascular smooth muscle tone and pathogenesis of several forms of hypertension. Earlier studies have suggested that PHF enhances the actions of other vasoconstrictors, while it has no in vitro vasoconstrictor property of its own. PHF was previously found to enhance the L-type Ca channel currents and intracellular Ca responses to depolarization in vascular smooth muscle cells (VSMCs). The present study examined whether PHF might act on K channels in the plasma membrane of VSMCs. Primary cultured VSMCs from rat tail artery were used. The whole-cell version of the patch-clamp technique was used under conditions in which there was no contribution of Ca-activated K channels to the outward current. Both purified and semipurified PHF inhibited the delayed rectifier type potassium current in a dose-dependent manner. The effect was time dependent and was first significantly different from the control current after 30 min. The inhibition of the delayed rectifier K channel was associated with a time-dependent decrease in the resting membrane potential. Therefore, PHF may alter VSMC cellular Ca responses by reducing the membrane potential to a level closer to the activation potential of Ca channels.Key words: parathyroid hypertensive factor, hypertension, potassium channels, vascular smooth muscle, membrane potential.


2001 ◽  
Vol 281 (1) ◽  
pp. C157-C165 ◽  
Author(s):  
Daryoush Ekhterae ◽  
Oleksandr Platoshyn ◽  
Stefanie Krick ◽  
Ying Yu ◽  
Sharon S. McDaniel ◽  
...  

Cell shrinkage is an incipient hallmark of apoptosis in a variety of cell types. The apoptotic volume decrease has been demonstrated to attribute, in part, to K+efflux; blockade of plasmalemmal K+channels inhibits the apoptotic volume decrease and attenuates apoptosis. Using combined approaches of gene transfection, single-cell PCR, patch clamp, and fluorescence microscopy, we examined whether overexpression of Bcl-2, an anti-apoptotic oncoprotein, inhibits apoptosis in pulmonary artery smooth muscle cells (PASMC) by diminishing the activity of voltage-gated K+(Kv) channels. A human bcl-2gene was infected into primary cultured rat PASMC using an adenoviral vector. Overexpression of Bcl-2 significantly decreased the amplitude and current density of Kv currents ( IKv). In contrast, the apoptosis inducer staurosporine (ST) enhanced IKv. In bcl-2-infected cells, however, the ST-induced increase in IKvwas completely abolished, and the ST-induced apoptosis was significantly inhibited compared with cells infected with an empty adenovirus (− bcl-2). Blockade of Kv channels in control cells (− bcl-2) by 4-aminopyridine also inhibited the ST-induced increase in IKvand apoptosis. Furthermore, overexpression of Bcl-2 accelerated the inactivation of IKvand downregulated the mRNA expression of the pore-forming Kv channel α-subunits (Kv1.1, Kv1.5, and Kv2.1). These results suggest that inhibition of Kv channel activity may serve as an additional mechanism involved in the Bcl-2-mediated anti-apoptotic effect on vascular smooth muscle cells.


Sign in / Sign up

Export Citation Format

Share Document