Glacier fluctuations during the past millennium in Garibaldi Provincial Park, southern Coast Mountains, British Columbia

2007 ◽  
Vol 44 (9) ◽  
pp. 1215-1233 ◽  
Author(s):  
Johannes Koch ◽  
John J Clague ◽  
Gerald D Osborn

The Little Ice Age glacier history in Garibaldi Provincial Park (southern Coast Mountains, British Columbia) was reconstructed using geomorphic mapping, radiocarbon ages on fossil wood in glacier forefields, dendrochronology, and lichenometry. The Little Ice Age began in the 11th century. Glaciers reached their first maximum of the past millennium in the 12th century. They were only slightly more extensive than today in the 13th century, but advanced at least twice in the 14th and 15th centuries to near their maximum Little Ice Age positions. Glaciers probably fluctuated around these advanced positions from the 15th century to the beginning of the 18th century. They achieved their greatest extent between A.D. 1690 and 1720. Moraines were deposited at positions beyond present-day ice limits throughout the 19th and early 20th centuries. Glacier fluctuations appear to be synchronous throughout Garibaldi Park. This chronology agrees well with similar records from other mountain ranges and with reconstructed Northern Hemisphere temperature series, indicating global forcing of glacier fluctuations in the past millennium. It also corresponds with sunspot minima, indicating that solar irradiance plays an important role in late Holocene climate change.

2004 ◽  
Vol 41 (8) ◽  
pp. 903-918 ◽  
Author(s):  
Alberto V Reyes ◽  
John J Clague

Holocene lateral moraines in the Coast Mountains of British Columbia are commonly composed of multiple drift units related to several glacier advances. In this paper, we document lateral moraine stratigraphy at Lillooet Glacier in the southern Coast Mountains. Five tills, separated by laterally extensive paleosols and layers of large woody debris, were found in three cross-sectional exposures through the northeast lateral moraine and two shallow gullies incised into its steep proximal face. Eighteen new radiocarbon ages constrain the timing of five separate advances of Lillooet Glacier: (1) prior to 3000 14C years BP; (2) ~3000 14C years BP; (3) ~2500 14C years BP; (4) ~1700 to 1400 14C years BP; and (5) during the Little Ice Age (LIA), after 470 14C years BP. The Lillooet Glacier chronology is broadly synchronous with other glacier records from the Coast Mountains. These records collectively demonstrate climate variability at higher frequencies during the late Holocene than is apparent from many paleoecological reconstructions. Reconstructions of glacier fluctuations are often hampered by poor preservation of landforms that predate the extensive LIA advances of the latest Holocene. Our results highlight the potential of lateral moraine stratigraphy for reconstructing these earlier events.


Author(s):  
David Ehrenfeld

When we arrived in Vancouver at the start of our vacation, the tabloid headline at the newspaper stand caught our attention. “World’s Bravest Mom,” it shrieked. We stopped to read. The story was simple; it needed no journalistic embellishment. Dusk, August 19, 1996. Mrs. Cindy Parolin is horseback riding with her four children in Tulameen, in southern British Columbia’s Okanagan region. Without warning, a cougar springs out of the vegetation, hurtling at the neck of one of the horses. In the confusion, Steven Parolin, age six, falls off his horse and is seized by the cougar. Mrs. Parolin, armed only with a riding crop, jumps off her horse and challenges the cougar, which drops the bleeding child and springs at her. Ordering her other children to take their wounded brother and go for help, Mrs. Parolin confronts the cougar alone. By the time rescuers reach her an hour later, she is dying. The cat, shot soon afterward, was a small one, little more than sixty pounds. Adult male cougars can weigh as much as 200 pounds, we learn the next day from the BC Environment’s pamphlet entitled “Safety Guide to Cougars.” We are on our way to Garibaldi Provincial Park, where we plan to do some hiking, and have stopped in the park head-quarters for information. “Most British Columbians live all their lives without a glimpse of a cougar, much less a confrontation with one,” says the pamphlet, noting that five people have been killed by cougars in British Columbia in the past hundred years. (Actually, the number is now higher; cougar attacks have become increasingly common in the western United States and Canada in recent years.) “Seeing a cougar should be an exciting and rewarding experience, with both you and the cougar coming away unharmed.”However, the pamphlet notes, cougars seem to be attracted to children as prey, possibly because of “their high-pitched voices, small size, and erratic movements.” When hiking, “make enough noise to prevent surprising a cougar . . . carry a sturdy walking stick to be used as a weapon if necessary,” and “keep children close-at-hand and under control.”


2003 ◽  
Vol 40 (10) ◽  
pp. 1413-1436 ◽  
Author(s):  
S J Larocque ◽  
D J Smith

The establishment of fourteen Little Ice Age (LIA) glacier chronologies in the Mt. Waddington area led to the development of an extended history of glacial activity in this portion of the southern British Columbia Coast Mountains, Canada. The glaciers were located within four different mountain ranges, and were of varying size and aspect. Dendrochronological and lichenometric techniques were used to provide relative age estimates of moraines formed as glacier termini retreated from advanced positions. Evidence for pre-LIA glacial events is best preserved at Tiedemann Glacier, where the oldest glacial advances date to A.D. 620 and 925–933. Soil-covered and well-vegetated moraines built at Cathedral, Pagoda, and Siva glaciers date to between A.D. 1203 and 1226. Following this event, moraines constructed at Ragnarok, Siva, and Cathedral glaciers in the mid-14th century suggest glaciers in the region underwent a period of downwasting and retreat before readvancing. The majority of moraines recorded in the Mt. Waddington area describe late-LIA glacial events shown to have constructed moraines that date to A.D. 1443–1458, 1506–1524, 1562–1575, 1597–1621, 1657–1660, 1767–1784, 1821–1837, 1871–1900, 1915–1928, and 1942–1946. Over the last 500 years, these moraine-building episodes were shown to occur on average every 65 years and suggest there has been prolonged synchronicity in the glaciological response to persistent climate-forcing mechanisms. Nevertheless, our analysis suggests that local factors, such as aspect and size, play an important role in individual glacial response. Notably, ice termini of medium-size glaciers facing eastwards showed a quicker response to climatically induced mass balance changes.


1986 ◽  
Vol 23 (3) ◽  
pp. 273-287 ◽  
Author(s):  
J. M. Ryder ◽  
B. Thomson

Moraine stratigraphy and morphology, radiocarbon dates from Klinaklini, Franklin, Tiedemann, Gilbert, and Bridge glaciers, and related information from elsewhere in the Coast Mountains are used to construct a chronology for glacier fluctuations. The Garibaldi phase of glacier expansion, 6000–5000 14C years BP, at the end of the early Holocene xerothermic interval, is indicated by overridden tree stumps. The mid-Neoglacial Tiedemann advance, 3300–1900 14C years BP, is represented by moraines, till, and meltwater sediments at three glaciers, but only Tiedemann Glacier attained its greatest Holocene extent at this time. Late Neoglacial expansion commenced before 900 14C years BP and continued without notable interruption until glaciers achieved their maximum post-Pleistocene expansion during the eighteenth and nineteenth centuries. Evidence for the Garibaldi and Tiedemann events is scarce within the Coast Mountains because of the more extensive late Neoglacial advance. However, correlative advances have been recognized in adjacent mountains within British Columbia, Washington, and Alaska.


2012 ◽  
Vol 78 (3) ◽  
pp. 417-426 ◽  
Author(s):  
Kara J. Pitman ◽  
Dan J. Smith

AbstractMost glaciers in the British Columbia Coast Mountains reached their maximum Holocene extent during the Little Ice Age. Early- and late-Little Ice Age intervals of expansion and retreat fluctuations describe a mass-balance response to changing climates. Although existing dendroclimatic records provide insights into these climatic fluctuations over the last 400 yr, their short durations prohibit evaluation of early-Little Ice Age climate variability. To extend the duration of these records, submerged coarse woody debris salvaged from a high-elevation lake was cross-dated to living chronologies. The resulting chronology provides the opportunity to reconstruct a regional June–July air-temperature anomaly record extending from AD 1225 to 2010. The reconstruction shows that the intervals AD 1350–1420, 1475–1550, 1625–1700 and 1830–1940 characterized distinct periods of below-average June–July temperature followed by periods of above-average temperature. Our reconstruction provides the first annually resolved insights into high-elevation climates spanning the Little Ice Age in this region and indicates that Little Ice Age moraine stabilization corresponds to persistent intervals of warmer-than-average temperatures. We conclude that coarse woody debris submerged in high-elevation lakes has considerable potential for developing lengthy proxy climate records, and we recommend that researchers focus attention on this largely ignored paleoclimatic archive.


2017 ◽  
Vol 54 (1) ◽  
pp. 76-87 ◽  
Author(s):  
Vikki M. St-Hilaire ◽  
Dan J. Smith

Frank Mackie Glacier repeatedly advanced across the Bowser River valley in northwestern British Columbia to impound Tide Lake during the Holocene. The most recent infilling of Tide Lake was associated with a late Little Ice Age glacier advance and ended around 1930 when the lake catastrophically drained. Over the last century Frank Mackie Glacier has retreated and down wasted to reveal multiple glaciogenic sedimentary units within the proximal faces of prominent lateral moraines. The units are separated by buried in-situ tree stumps and laterally contiguous wood mats deposited on paleosols. Dendroglaciological and radiocarbon dating of these wood remains show that Frank Mackie Glacier expanded into standing forests at 3710–3300, 2700–2200, 1700–1290, 900–500, and 250–100 cal. years BP. These advances coincide closely in time with the previously established Tide Lake glacier dam chronology and with the Holocene history of other glaciers in the Bowser River watershed. The findings emphasize the likelihood that most glaciers within northwestern British Columbia underwent substantial size and mass balance changes over the last 4000 years, and often spent hundreds of years in advanced positions before retreating.


Sign in / Sign up

Export Citation Format

Share Document