Paleomagnetism of the Triassic Nikolai Greenstone, McCarthy Quadrangle, Alaska

1977 ◽  
Vol 14 (11) ◽  
pp. 2578-2592 ◽  
Author(s):  
J. W. Hillhouse

Paleomagnetic evidence indicates that the extensive early Mesozoic basalt field near McCarthy, south-central Alaska, originated far south of its present position relative to North America. Results obtained from the Middle and (or) Upper Triassic Nikolai Greenstone suggest that those basalts originated within 15° of the paleoequator. This position is at least 27° (3000 km) south of the Upper Triassic latitude predicted for McCarthy on the basis of paleomagnetic data from continental North America. The Nikolai pole, as determined from 50 flows sampled at 5 sites, is at 2.2° N, 146.1° E (α95 = 4.8°). The polarity of the pole is ambiguous, because the corresponding magnetic direction has a low inclination and a westerly declination. Therefore, the Nikolai may have originated near 15° N latitude or, alternatively, as far south as 15° S latitude. In addition to being displaced northward, the Nikolai block has been rotated roughly 90° about the vertical axis. A measure of the reliability of this pole is provided by favorable results from the following tests: (1) Within one stratigraphic section, normal and reversed directions from consecutive flows are antipolar. (2) Consistent directions were obtained from sites 30 km apart. (3) Application of the fold test indicated the magnetization was acquired before the rocks were folded. (4) The magnetizations of several pilot specimens are thermally stable up to 550 °C. The stable component is probably carried by magnetite with lamellar texture, a primary feature commonly acquired by a basalt at high temperature during initial cooling of the magma. Geologic and paleomagnetic evidence indicates that the Nikolai is allochthonous to Alaska and that, together with associated formations in southern Alaska and British Columbia, it is part of a now disrupted equatorial terrane.

1991 ◽  
Vol 28 (10) ◽  
pp. 1553-1560 ◽  
Author(s):  
C. McGowan

New ichthyosaur material is reported from an Upper Triassic locality on Williston Lake, northeastern British Columbia. The paucity of ichthyosaurs from the Triassic of North America make this a potentially important site. An isolated forefin is described, which is unlike that of any Triassic species from North America but which compares closely with certain Lower Jurassic species from England and Germany. The new material suggests that the transition in the ichthyosaurian fauna at the close of the Triassic may have been less abrupt than was previously supposed.


1978 ◽  
Vol 15 (6) ◽  
pp. 971-980 ◽  
Author(s):  
Robert J. Fulton ◽  
Geoffrey W. Smith

The late Pleistocene deposits of south-central British Columbia record two major glacial and two major nonglacial periods of deposition. The oldest recognized Pleistocene deposits, called Westwold Sediments, were deposited during a nonglacial interval more than 60 000 years ago. Little information is available on the climate of this period, but permafrost may have been present at one time during final stages of deposition of Westwold Sediments. The latter part of this nonglacial period is probably correlative with the early Wisconsin Substage of the Great Lakes – St. Lawrence Valley area. However, deposition of the Westwold Sediments may have begun during the Sangamon Interglacial.Okanagan Centre Drift is the name applied to sediments deposited during the glaciation that followed deposition of Westwold Sediments. Okanagan Centre Drift is known to be older than 43 800 years BP and probably is older than 51 000. It is considered to correlate with an early Wisconsin glacial period.Bessette Sediments were deposited during the last major nonglacial period, which in south-central British Columbia persisted from at least 43 800 years BP (possibly more than 51 000) to about 19 000 years BP. This episode corresponds to Olympia Interglaciation of the Pacific Coast region and the mid-Wisconsin Substage of the Great Lakes – St. Lawrence Valley area. During parts of Olympia Interglaciation the climate was probably as warm as the present-day climate in the interior of British Columbia. Information from coastal regions indicates that there may have been periods of cooler and moister climate.Kamloops Lake Drift was deposited during the last major glaciation of south-central British Columbia. Ice occupied lowland areas from approximately 19 000 to 10 000 years BP. This period corresponds approximately to the Fraser Glaciation of the Pacific Coast region and the late Wisconsin Substage of central and eastern parts of North America.


2001 ◽  
Vol 38 (10) ◽  
pp. 1403-1422 ◽  
Author(s):  
Randolph J Enkin ◽  
Judith Baker ◽  
Peter S Mustard

The Baja B.C. model has the Insular Superterrane and related entities of the Canadian Cordillera subject to >3000 km of northward displacement with respect to cratonic North America from ~90 to ~50 Ma. The Upper Cretaceous Nanaimo Group (on and about Vancouver Island, British Columbia) is a prime target to test the model paleomagnetically because of its locality and age. We have widely sampled the basin (67 sites from seven islands spread over 150 km, Santonian to Maastrichtian age). Most samples have low unblocking temperatures (<450°C) and coercivities (~10 mT) and strong present-field contamination, forcing us to reject three quarters of the collection. Beds are insufficiently tilted to provide a conclusive fold test, and we see evidence of relative vertical axis rotations. However, inclination-only analysis indicates pretilting remanence is preserved for many samples. Both polarities are observed, and reversals correlate well to paleontological data, proving that primary remanence is observed. The mean inclination, 55 ± 3°, is 13 ± 4° steeper than previously published results. Our new paleolatitude, 35.7 ± 2.6° is identical to that determined from the slightly older Silverquick and Powell Creek formations at Mount Tatlow, yet the inferred displacement is smaller (2300 ± 400 km versus 3000 ± 500 km) because North America was drifting southward starting around 90 Ma. The interpreted paleolatitude conflicts with sedimentologic and paleontologic evidence that the Nanaimo Basin was deposited near its present northern position.


1977 ◽  
Vol 14 (11) ◽  
pp. 2565-2577 ◽  
Author(s):  
David L. Jones ◽  
N. J. Silberling ◽  
John Hillhouse

A large terrane extending along the Pacific margin of North America, from Vancouver Island, British Columbia, to south-central Alaska, is characterized throughout by similar sequences of Triassic rocks. These rocks, including a thick pile of tholeiitic flows and pillow lava (Nikolai Greenstone and Karmutsen Formation) capped with inner-platform carbonates (Chitistone Limestone, Whitestripe Marble, Kunga Formation, and Quatsino Limestone), overlie an upper Paleozoic andesitic arc sequence and Permian argillite and limestone. This coherent terrane, herein named Wrangellia, is juxtaposed against unlike sequences of Triassic and older rocks throughout its extent and is interpreted to be allochthonous. Paleomagnetic data obtained from the Nikolai Greenstone and published in a companion article by Hillhouse indicate that Middle and (or) Upper Triassic rocks in southern Alaska formed in low paleolatitudes, probably within 15° of the paleo-equator.A possible southeastern extension of Wrangellia occurs in the Hells Canyon region of eastern Oregon and western Idaho. This area contains the typical Triassic sequence of Wrangellia and has been interpreted by other geologists as allochthonous. Paleomagnetic data are lacking, however, to document its original latitude.


2011 ◽  
Vol 85 (1) ◽  
pp. 29-31
Author(s):  
George D. Stanley ◽  
John-Paul Zonneveld

Cassianastraea is an enigmatic colonial Triassic cnidarian first described as a coral but subsequently referred to the Hydrozoa. We report here the first occurrence in Canada of fossils we designate as Cassianastraea sp. from the Williston Lake region of British Columbia. The specimens come from older collections of the Geological Survey of Canada, collected in Upper Triassic (Carnian) strata assigned to either the Ludington or Baldonnel Formations. While well known in reef associations of the former Tethys region, Cassianiastraea is relatively rare in North America. The Carnian Baldonnel Formation contains the earliest coral reefs from the North American craton and we suspect that Cassianastraea sp. also came from this reef association.


2020 ◽  
Vol 16 (11) ◽  
pp. 20200631 ◽  
Author(s):  
Ben T. Kligman ◽  
Adam D. Marsh ◽  
Hans-Dieter Sues ◽  
Christian A. Sidor

The Upper Triassic tetrapod fossil record of North America features a pronounced discrepancy between the assemblages of present-day Virginia and North Carolina relative to those of the American Southwest. While both are typified by large-bodied archosaurian reptiles like phytosaurs and aetosaurs, the latter notably lacks substantial representation of mammal relatives, including cynodonts. Recently collected non-mammalian eucynodontian jaws from the middle Norian Blue Mesa Member of the Chinle Formation in northeastern Arizona shed light on the Triassic cynodont record from western equatorial Pangaea. Importantly, they reveal new biogeographic connections to eastern equatorial Pangaea as well as southern portions of the supercontinent. This discovery indicates that the faunal dissimilarity previously recognized between the western and eastern portions of equatorial Pangaea is overstated and possibly reflects longstanding sampling biases, rather than a true biogeographic pattern.


1983 ◽  
Vol 20 (8) ◽  
pp. 1340-1344 ◽  
Author(s):  
D. T. A. Symons

The 198 Ma Guichon batholith outcrops in the southern end of the Intermontane Belt or composite Terrane I of the western North American Cordillera. Thermal demagnetization of specimens from 19 sites at 200, 450, and 560 °C isolates a stable primary component at 560 °C in 13 sites, giving a pole position of 347°W, 52°N (δp = 5°, δm = 9°). These data support earlier results obtained by the author that indicate the batholith has undergone a clockwise rotation about a vertical axis of ~43 ± 7°. They also show that the batholith has undergone northward motion of 13 ± 6°, which supports recent arguments that the terrane underwent 14 ± 2° of northward translation between Late Cretaceous and pre-Miocene time.


1971 ◽  
Vol 8 (11) ◽  
pp. 1388-1396 ◽  
Author(s):  
D. T. A. Symons

The Guichon Batholith, located near the south end of the Interior Plateau in south–central British Columbia, is composed of unmetamorphosed massive felsic intrusive rocks in several distinct phases (Northcote 1969). Stratigraphic and radiometric evidence indicate that the batholith was emplaced during the Late Triassic (198 ± 8 m.y.) and unroofed by Early Jurassic. Analysis of the remanence of 92 cores (184 specimens) from 19 representative sites led to the isolation of a stable primary remanent magnetism at 15 sites after alternating-field demagnetization. Variance ratio analysis of the remanence directions indicates that the phases cannot be distinguished by the paleomagnetic method. This supports the evidence from contact relationships and K–Ar isotopic dating of biotites that the phases cooled nearly contemporaneously. The pole position determined for the Guichon Batholith (12.9° E, 65.6° N) is discordant with other Upper Triassic pole positions determined for North American formations. The discordance may be explained by a clockwise rotation 40° ± 10° of the batholith and surrounding rocks in the southern end of the Interior Plateau, with most of the Plateau to the north acting as a stable non-rotated tectonic block. Other evidence is cited which is consistent with this hypothesis.


1999 ◽  
Vol 36 (9) ◽  
pp. 1483-1494 ◽  
Author(s):  
J Dostal ◽  
V Gale ◽  
B N Church

The Upper Triassic Takla Group volcano-sedimentary assemblage is part of the Stikine Terrane of the Intermontane Belt in the Canadian Cordillera and covers an area of more than 30 000 km2 in a belt up to 50 km wide and more than 800 km long. In the McConnell Creek area of north-central British Columbia, the assemblage consists of plagioclase-clinopyroxene-phyric, dominantly basaltic to andesitic flows and pyroclastic rocks, interlayered with volcanogenic sedimentary rocks. Compositionally, the volcanic rocks are intermediate between tholeiitic and calc-alkaline. Their mantle-normalized trace element patterns are characterized by a moderate large-ion lithophile element enrichment and Nb and Ti depletion, suggesting that magmatism occurred in a volcanic-arc setting. Flat, heavy rare earth element chondrite-normalized patterns with (La/Yb)n ratios from 2 to 4.5 suggest that the parent magma was produced by mantle melting in the spinel stability field. The low Sr isotopic ratios (87Sr/86Sri approximately equal to 0.7033-0.7043) and positive εNd values (~ +7) indicate that an older sialic crust was not involved in their genesis. A coeval and compositionally similar volcano-sedimentary assemblage, also of the Takla Group, occurs in the adjacent Quesnel Terrane, in fault contact with the Stikinian Takla Group. Chemical resemblances between the Takla Groups of the Stikine and Quesnel terranes suggest that the volcanic assemblages may have had similar source compositions and melt histories. These results emphasize larger scale similarities between the Stikine and Quesnel terranes and suggest the Upper Triassic volcanic suites represent different fragments of the same early Mesozoic arc system.


Sign in / Sign up

Export Citation Format

Share Document