Coastal Circulation and Physical Oceanography of the Scotian Shelf and the Gulf of Maine

1976 ◽  
Vol 33 (1) ◽  
pp. 98-115 ◽  
Author(s):  
W. H. Sutcliffe Jr. ◽  
R. H. Loucks ◽  
K. F. Drinkwater

Correlations between annual catch of coastal commercial species of fish and the environmental factors of sea temperatures and St. Lawrence River discharge have led to an investigation of the relationship between the latter. Examining year-to-year variability of monthly means, effects of the St. Lawrence River discharge can be traced by correlation analysis with sea temperatures to propagate from the Gulf of St. Lawrence onto the Scotian Shelf and through the Gulf of Maine at known coastal current drift speeds. Seasonal salinity and transport data support such a flow at least to a section off Halifax on the Scotian Shelf. Within the Gulf of Maine seasonal salinities do not support continuity of flow; however, possible reasons and mechanisms for this are discussed. Other factors such as local river runoff in the Gulf of Maine, Labrador Current, and large-scale weather systems are briefly considered and discussed. It is proposed that the Gulf of St. Lawrence to the Gulf of Maine inclusive be considered as an oceanographic system and events occurring in the southern part on time scales of a month or more are not independent of more northerly events. It is not interpreted that the river discharge is the driving force of such an oceanographic system but rather influences the water properties within the source region of the flow, i.e. the Gulf of St. Lawrence. Some biological implications of the Gulf of St. Lawrence to Gulf of Maine pathway are pointed out.

2018 ◽  
Author(s):  
Krysten Rutherford ◽  
Katja Fennel

Abstract. The circulation in the northwestern North Atlantic Ocean is highly complex, characterized by the confluence of two major western boundary current systems and several shelf currents. Here we present the first comprehensive analysis of transport paths and timescales for the northwestern North Atlantic shelf, which is useful for estimating ventilation rates, describing circulation and mixing, characterizing the composition of water masses with respect to different source regions, and elucidating rates and patterns of biogeochemical processing, species dispersal and genetic connectivity. Our analysis uses dye and age tracers within a high-resolution circulation model of the region, divided into 9 sub-regions, to diagnose retention times, transport pathways, and transit times. Retention times are shortest on the Scotian Shelf (~ 3 months) where the inshore and shelf-break branches of the coastal current system result in high along-shelf transport to the southwest. Larger retention times are simulated on the Grand Banks (~ 4 months), in the Gulf of St. Lawrence (~ 12 months) and the Gulf of Maine (~ 6 months). Source water analysis shows that Scotian Shelf water is primarily comprised of waters from the Grand Banks and Gulf of St. Lawrence, with varying composition across the shelf. Contributions from the Gulf of St. Lawrence are larger at near-shore locations, whereas locations near the shelf break have larger contributions from the Grand Banks and slope waters. Waters from the deep slope have little connectivity with the shelf, because the shelf-break current inhibits transport across the shelf break. Grand Banks and Gulf of St. Lawrence waters are therefore dominant controls on biogeochemical properties, and on setting and sustaining planktonic communities on the Scotian Shelf.


<i>Abstract</i>.—Zooplankton communities perform a critical role as secondary producers in marine ecosystems. They are vulnerable to climate-induced changes in the marine environment, including temperature, stratification, and circulation, but the effects of these changes are difficult to discern without sustained ocean monitoring. The physical, chemical, and biological environment of the Gulf of Maine, including Georges Bank, is strongly influenced by inflow from the Scotian Shelf and through the Northeast Channel, and thus observations both in the Gulf of Maine and in upstream regions are necessary to understand plankton variability and change in the Gulf of Maine. Large-scale, quasi synoptic plankton surveys have been performed in the Gulf of Maine since Bigelow’s work at the beginning of the 20th century. More recently, ongoing plankton monitoring efforts include Continuous Plankton Recorder sampling in the Gulf of Maine and on the Scotian Shelf, U.S. National Marine Fisheries Service’s MARMAP (Marine Resources Monitoring, Assessment, and Prediction) and EcoMon (Ecosystem Monitoring) programs sampling the northeast U.S. Continental Shelf, including the Gulf of Maine, and Fisheries and Oceans Canada’s Atlantic Zone Monitoring Program on the Scotian Shelf and in the eastern Gulf of Maine. Here, we review and compare past and ongoing zooplankton monitoring programs in the Gulf of Maine region, including Georges Bank and the western Scotian Shelf, to facilitate retrospective analysis and broadscale synthesis of zooplankton dynamics in the Gulf of Maine. Additional sustained sampling at greater-than-monthly frequency at selected sites in the Gulf of Maine would be necessary to detect changes in phenology (i.e. seasonal timing of biological events). Sustained zooplankton sampling in critical nearshore fish habitats and in key feeding areas for upper trophic level organisms, such as marine mammals and seabirds, would yield significant insights into their dynamics. The ecosystem dynamics of the Gulf of Maine are strongly influenced by large-scale forcing and variability in upstream inflow. Improved coordination of sampling and data analysis among monitoring programs, effective data management, and use of multiple modeling approaches will all enhance the mechanistic understanding of the structure and function of the Gulf of Maine pelagic ecosystem.


2014 ◽  
Vol 71 (10) ◽  
pp. 1579-1592 ◽  
Author(s):  
Mélanie Béguer-Pon ◽  
Martin Castonguay ◽  
José Benchetrit ◽  
Daniel Hatin ◽  
Guy Verreault ◽  
...  

Downstream migration of silver American eels (Anguilla rostrata) from the St. Lawrence system was examined using acoustic telemetry. One hundred and thirty six silver American eels were tagged, and their passage was recorded using fixed acoustic arrays covering a 420 km distance along the St. Lawrence River and Estuary. Eighty-nine percent of the tagged eels were detected. All migrant eels (111) exhibited unidirectional and downstream movements, but the migration was not completed in one continuous direct movement. High individual variability in migratory longitudinal profiles was documented as well as in individual speed with no apparent relation to river discharge or morphological traits. Migration speed increased over the season. Our observations demonstrated that migrating silver American eels are largely nocturnal and demonstrated the use of nocturnal, ebb tide transport to leave the estuary. With 44 additional eels tagged and released in the maritime estuary, escapement of 180 silver American eels from the Gulf of St. Lawrence system was monitored along a 125 km acoustic line that entirely covered Cabot Strait in 2011. Surprisingly, only four of the tagged eels were recorded escaping the Gulf of St. Lawrence.


Ocean Science ◽  
2018 ◽  
Vol 14 (5) ◽  
pp. 1207-1221 ◽  
Author(s):  
Krysten Rutherford ◽  
Katja Fennel

Abstract. The circulation in the northwestern North Atlantic Ocean is highly complex, characterized by the confluence of two major western boundary current systems and several shelf currents. Here we present the first comprehensive analysis of transport paths and timescales for the northwestern North Atlantic shelf, which is useful for estimating ventilation rates, describing circulation and mixing, characterizing the composition of water masses with respect to different source regions, and elucidating rates and patterns of biogeochemical processing, species dispersal, and genetic connectivity. Our analysis uses dye and age tracers within a high-resolution circulation model of the region, divided into nine subregions, to diagnose retention times, transport pathways, and transit times. Retention times are shortest on the Scotian Shelf (∼ 3 months), where the inshore and shelf-break branches of the coastal current system result in high along-shelf transport to the southwest, and on the Grand Banks (∼ 3 months). Larger retention times are simulated in the Gulf of St. Lawrence (∼ 12 months) and the Gulf of Maine (∼ 6 months). Source water analysis shows that Scotian Shelf water is primarily comprised of waters from the Grand Banks and Gulf of St. Lawrence, with varying composition across the shelf. Contributions from the Gulf of St. Lawrence are larger at near-shore locations, whereas locations near the shelf break have larger contributions from the Grand Banks and slope waters. Waters from the deep slope have little connectivity with the shelf, because the shelf-break current inhibits transport across the shelf break. Grand Banks and Gulf of St. Lawrence waters are therefore dominant controls on biogeochemical properties, and on setting and sustaining planktonic communities on the Scotian Shelf.


2020 ◽  
Vol 222 ◽  
pp. 05004
Author(s):  
Irma Martyn ◽  
Yaroslav Petrov ◽  
Sergey Stepanov ◽  
Artem Sidorenko

The article discusses the issue of the relationship between climate change and the productivity of oceanic ecosystems. The data on the course of the number of commercial populations in the productive zone of the ocean are analyzed. Comparison of data on climate fluctuations and populations of commercial fish over a period of 16 years, which will reveal the conjugation of climate fluctuations and fish productivity. On the basis of the results obtained, a model is proposed for predicting the abundance of a commercial species for several years, depending on the climate. The results obtained provide an answer to the question of whether long-term fluctuations in the abundance of commercial species are influenced by the climate or large-scale fishing.


VASA ◽  
2020 ◽  
pp. 1-6
Author(s):  
Hanji Zhang ◽  
Dexin Yin ◽  
Yue Zhao ◽  
Yezhou Li ◽  
Dejiang Yao ◽  
...  

Summary: Our meta-analysis focused on the relationship between homocysteine (Hcy) level and the incidence of aneurysms and looked at the relationship between smoking, hypertension and aneurysms. A systematic literature search of Pubmed, Web of Science, and Embase databases (up to March 31, 2020) resulted in the identification of 19 studies, including 2,629 aneurysm patients and 6,497 healthy participants. Combined analysis of the included studies showed that number of smoking, hypertension and hyperhomocysteinemia (HHcy) in aneurysm patients was higher than that in the control groups, and the total plasma Hcy level in aneurysm patients was also higher. These findings suggest that smoking, hypertension and HHcy may be risk factors for the development and progression of aneurysms. Although the heterogeneity of meta-analysis was significant, it was found that the heterogeneity might come from the difference between race and disease species through subgroup analysis. Large-scale randomized controlled studies of single species and single disease species are needed in the future to supplement the accuracy of the results.


2020 ◽  
pp. 27-34
Author(s):  
Vladimir Batiuk

In this article, the ''Cold War'' is understood as a situation where the relationship between the leading States is determined by ideological confrontation and, at the same time, the presence of nuclear weapons precludes the development of this confrontation into a large-scale armed conflict. Such a situation has developed in the years 1945–1989, during the first Cold War. We see that something similar is repeated in our time-with all the new nuances in the ideological struggle and in the nuclear arms race.


2020 ◽  
Author(s):  
Amir Karami ◽  
Brandon Bookstaver ◽  
Melissa Nolan

BACKGROUND The COVID-19 pandemic has impacted nearly all aspects of life and has posed significant threats to international health and the economy. Given the rapidly unfolding nature of the current pandemic, there is an urgent need to streamline literature synthesis of the growing scientific research to elucidate targeted solutions. While traditional systematic literature review studies provide valuable insights, these studies have restrictions, including analyzing a limited number of papers, having various biases, being time-consuming and labor-intensive, focusing on a few topics, incapable of trend analysis, and lack of data-driven tools. OBJECTIVE This study fills the mentioned restrictions in the literature and practice by analyzing two biomedical concepts, clinical manifestations of disease and therapeutic chemical compounds, with text mining methods in a corpus containing COVID-19 research papers and find associations between the two biomedical concepts. METHODS This research has collected papers representing COVID-19 pre-prints and peer-reviewed research published in 2020. We used frequency analysis to find highly frequent manifestations and therapeutic chemicals, representing the importance of the two biomedical concepts. This study also applied topic modeling to find the relationship between the two biomedical concepts. RESULTS We analyzed 9,298 research papers published through May 5, 2020 and found 3,645 disease-related and 2,434 chemical-related articles. The most frequent clinical manifestations of disease terminology included COVID-19, SARS, cancer, pneumonia, fever, and cough. The most frequent chemical-related terminology included Lopinavir, Ritonavir, Oxygen, Chloroquine, Remdesivir, and water. Topic modeling provided 25 categories showing relationships between our two overarching categories. These categories represent statistically significant associations between multiple aspects of each category, some connections of which were novel and not previously identified by the scientific community. CONCLUSIONS Appreciation of this context is vital due to the lack of a systematic large-scale literature review survey and the importance of fast literature review during the current COVID-19 pandemic for developing treatments. This study is beneficial to researchers for obtaining a macro-level picture of literature, to educators for knowing the scope of literature, to journals for exploring most discussed disease symptoms and pharmaceutical targets, and to policymakers and funding agencies for creating scientific strategic plans regarding COVID-19.


2019 ◽  
Vol 22 (3) ◽  
pp. 365-380 ◽  
Author(s):  
Matthias Olthaar ◽  
Wilfred Dolfsma ◽  
Clemens Lutz ◽  
Florian Noseleit

In a competitive business environment at the Bottom of the Pyramid smallholders supplying global value chains may be thought to be at the whims of downstream large-scale players and local market forces, leaving no room for strategic entrepreneurial behavior. In such a context we test the relationship between the use of strategic resources and firm performance. We adopt the Resource Based Theory and show that seemingly homogenous smallholders deploy resources differently and, consequently, some do outperform others. We argue that the ‘resource-based theory’ results in a more fine-grained understanding of smallholder performance than approaches generally applied in agricultural economics. We develop a mixed-method approach that allows one to pinpoint relevant, industry-specific resources, and allows for empirical identification of the relative contribution of each resource to competitive advantage. The results show that proper use of quality labor, storage facilities, time of selling, and availability of animals are key capabilities.


Author(s):  
Richard Culliford ◽  
Alex J. Cornish ◽  
Philip J. Law ◽  
Susan M. Farrington ◽  
Kimmo Palin ◽  
...  

Abstract Background Epidemiological studies of the relationship between gallstone disease and circulating levels of bilirubin with risk of developing colorectal cancer (CRC) have been inconsistent. To address possible confounding and reverse causation, we examine the relationship between these potential risk factors and CRC using Mendelian randomisation (MR). Methods We used two-sample MR to examine the relationship between genetic liability to gallstone disease and circulating levels of bilirubin with CRC in 26,397 patients and 41,481 controls. We calculated the odds ratio per genetically predicted SD unit increase in log bilirubin levels (ORSD) for CRC and tested for a non-zero causal effect of gallstones on CRC. Sensitivity analysis was applied to identify violations of estimator assumptions. Results No association between either gallstone disease (P value = 0.60) or circulating levels of bilirubin (ORSD = 1.00, 95% confidence interval (CI) = 0.96–1.03, P value = 0.90) with CRC was shown. Conclusions Despite the large scale of this study, we found no evidence for a causal relationship between either circulating levels of bilirubin or gallstone disease with risk of developing CRC. While the magnitude of effect suggested by some observational studies can confidently be excluded, we cannot exclude the possibility of smaller effect sizes and non-linear relationships.


Sign in / Sign up

Export Citation Format

Share Document