Potential effects of maternal factors on spawning stock–recruitment relationships under varying fishing pressure

1999 ◽  
Vol 56 (10) ◽  
pp. 1882-1890 ◽  
Author(s):  
Beth Scott ◽  
Gudrun Marteinsdottir ◽  
Peter Wright

The use of spawning stock biomass as a direct measure of reproductive potential may not be valid because of age- or size-specific differences in fecundity and the effect of maternal size and condition on offspring viability. In this study, we examine the potential significance of these effects using modelled Atlantic cod (Gadus morhua) populations. We quantify how changes in the age composition of the spawning stock, due to a range of fishing pressures and under different stock-recruitment relationships, could influence the reproductive output. Quantitative comparisons were made between a "standard" population where all age-classes only suffer natural instantaneous mortality (M = 0.2) and populations that suffer increasing levels of fishing pressure (F = 0.0-1.0). The results of the modelling exercise suggests that if the effects of the loss of more fecund older/larger individuals in the population are not considered, the number of potential recruits produced by populations under higher levels of fishing mortality could be overestimated by as much as 60%. When age/size-related maternal effects on egg viability are also considered, the amount of potential recruits can be overestimated by a further 10% in the heavily exploited populations.

2019 ◽  
Vol 76 (6) ◽  
pp. 937-949 ◽  
Author(s):  
Lisha Guan ◽  
Yong Chen ◽  
James A. Wilson ◽  
Timothy Waring ◽  
Lisa A. Kerr ◽  
...  

To evaluate the influence of spatially variable and connected recruitments at spawning component scale on complex stock dynamics, a typical agent-based complex stock was modeled based on the Atlantic cod (Gadus morhua) stock in the Gulf of Maine. We simulated three scenarios with different degrees of connectivity (i.e., individual exchange) between the spatially variable recruitments of 36 spawning components within four subpopulations under the stock. Subsequently, the temporal trends were compared for different scenarios in age-1 recruitment, spawning stock biomass, and local depletion proportion of the overall complex stock and the individual subpopulations. Results show that increased recruitment connectivity from 0.1–0.2 to 0.6–0.8 between various components tends to increase the productivity and stability of a complex stock at local and global scales and reduce the proportion of depleted components due to overfishing. Moreover, depletions of less productive components may occur without a substantial reduction in the overall complex stock biomass and recruitment.


2006 ◽  
Vol 63 (5) ◽  
pp. 980-994 ◽  
Author(s):  
C Tara Marshall ◽  
Coby L Needle ◽  
Anders Thorsen ◽  
Olav Sigurd Kjesbu ◽  
Nathalia A Yaragina

Stock–recruit relationships that use spawning stock biomass (SSB) to represent reproductive potential assume that the proportion of SSB composed of females and the relative fecundity (number of eggs produced per unit mass) are both constant over time. To test these two assumptions, female-only spawner biomass (FSB) and total egg production (TEP) were estimated for the Northeast Arctic stock of Atlantic cod (Gadus morhua) over a 56-year time period. The proportion of females (FSB/SSB) varied between 24% and 68%, and the variation was systematic with length such that SSB became more female-biased as the mean length of spawners increased. Relative fecundity of the stock (TEP/SSB) varied between 115 and 355 eggs·g–1 and was significantly, positively correlated with mean length of spawners. Both FSB and TEP gave a different interpretation of the recruitment response to reductions in stock size (overcompensatory) compared with that obtained using SSB (either compensatory or depensatory). There was no difference between SSB and FSB in the assessment of stock status; however, in recent years (1980–2001) TEP fell below the threshold level at which recruitment becomes impaired more frequently than did SSB. This suggests that using SSB as a measure of stock reproductive potential could lead to overly optimistic assessments of stock status.


1998 ◽  
Vol 55 (6) ◽  
pp. 1372-1377 ◽  
Author(s):  
Gudrun Marteinsdottir ◽  
Kristjan Thorarinsson

The size of the Icelandic cod stock has been gradually declining since the middle of this century. Recruitment has been poor over an extended period of time and much below the long-term average since 1985. Except for the concurrent decrease in stock size and recruitment during this period, the stock size - recruitment relationship is weak. This relationship is improved by including the age composition of the spawning stock. Spawning stock age diversity in each year from 1955 to 1992 was estimated with the Shannon index using the number of mature fish in each age group. By including information on age composition, 31% of the total variation in recruitment was accounted for by the model with stock size, age diversity, and the interaction between the two, compared with less than 15% by single factor models of either age diversity or stock size. These results indicate that age diversity is an important component in stock-recruitment models and that one of the management goals for fish species should be to maintain high age diversity in the spawning stocks.


1998 ◽  
Vol 55 (6) ◽  
pp. 1430-1442 ◽  
Author(s):  
David A Methven ◽  
David C Schneider

Habitat and size of juvenile Atlantic cod (Gadus morhua) change substantially during the first 3 years after settlement, and hence, cohort size cannot be followed using a single gear. We investigated whether catch could be calibrated across gear types by deploying pairs of gears repeatedly in the same habitat. As expected, size selectivity differed substantially among gears. Trawls and seines generally collected individuals <200 mm. Gillnets and jiggers collected individuals >150 mm. Size modes, corresponding to age-classes, were common to catches of most gears. Highest catches were taken by trawls and seines. Gillnet catches were orders of magnitude lower. Standardized catches could not be calibrated across pairs of gears deployed in the same habitat at approximately the same time. However, it was possible to identify spatial depth gradients and diel changes in catch that were independent of gear. Consistent spatial and temporal patterns across gears were interpreted as characteristic of fish populations, not just of gears. Density in coastal habitats was higher at night and was higher at 4-7 m than at greater depths. These results, in conjunction with other studies, establish that coastal depths of 4-7 m represent the centre, and not the edge, of the distribution of age 0 cod in Newfoundland during autumn. Hence nursery areas during the early 1990s, a time of historically low spawning stock biomass, must be identified as the coastal zone, not offshore.


2020 ◽  
Vol 77 (6) ◽  
pp. 1049-1058 ◽  
Author(s):  
Robert Boenish ◽  
Yong Chen

Full accounting of fisheries mortality is one of the most tractable ways to improve stock assessments. However, it can be challenging to obtain in cases when missing catch comes from small-scale nontarget fisheries unrequired to report incidental catch. Atlantic cod (Gadus morhua) in the Gulf of Maine (GoM), USA, once served as a regionally important fishery, but has been serially depleted to <5% of historic spawning stock biomass. Recent management efforts to rebuild GoM cod have largely failed. We test the hypothesis that unaccounted bycatch of Atlantic cod in the Maine American lobster (Homarus americanus) fishery is a substantial missing piece in the GoM Atlantic cod assessment. We integrated multiple scenarios of hind-casted discards into the two accepted regional cod assessment models from 1982 to 2016. Incorporation of discards improved the assessment bias for both models (10%–15%), increased estimates of spawning stock biomass (4%), and decreased estimates of fishing mortality (9%). A novel evaluation of longitudinal model bias suggests that alternative modelling approaches or specifications may be warranted. We highlight the importance of accounting for all fishery-related mortality and the need for methods to deliver more comprehensive estimates from both target and nontarget fisheries.


2005 ◽  
Vol 62 (1) ◽  
pp. 65-74 ◽  
Author(s):  
M. Joanne Morgan ◽  
John Brattey

Abstract Variation in maturity-at-age, sex ratio, and potential egg production (through changes in length at age) were examined for northern cod (NAFO Division 2J + 3KL), southern Grand Bank cod (3NO), and southern Newfoundland cod (3Ps). All showed significant interannual variability in each stock. Estimates of reproductive potential were produced by sequentially incorporating estimates of proportion mature at age, sex ratio at age, and potential egg production. The estimates of reproductive potential produced by each method were broadly similar, but there were important differences. This leads to differing perceptions of stock productivity, as measured by relative rate of recruitment of a stock and in the spawning stock produced per recruit. These differing perceptions can have a major impact on expectations for the recovery of depleted stocks and the sustainability of various levels of fishing. Efforts should be made to improve estimates of reproductive potential by further exploring the impacts of changes in the spawning characteristics of populations, and by collecting such basic information as fecundity data.


1993 ◽  
Vol 50 (8) ◽  
pp. 1599-1609 ◽  
Author(s):  
Ransom A. Myers ◽  
Kenneth F. Drinkwater ◽  
Nicholas J. Barrowman ◽  
James W. Baird

Recruitment predictions for Atlantic cod (Gadus morhua) in the North Atlantic, based upon a previously published regression with salinity, are found to be well correlated with recent recruitment estimates from both virtual population analysis and those derived from research surveys. The addition of spawning stock biomass in the regression significantly increased the percentage of the variance accounted for in the recruitment time series. A similar relationship between recruitment and salinity was found for two nearby stocks (southern Grand Banks and St. Pierre Bank). Oceanographic and food chain mechanisms that might be responsible for a link between salinity and recruitment are discussed.


2005 ◽  
Vol 62 (3) ◽  
pp. 339-343 ◽  
Author(s):  
Keith M. Brander

Abstract Stocks of Atlantic cod (Gadus morhua) have been declining over much of the North Atlantic for the past 30 years, owing to a combination of overfishing and adverse changes in their environment. In a previous study, environmental effects were introduced as an extra parameter in the stock-recruit relationship, where they act as a multiplier, independent of the level of spawning-stock biomass (SSB). Using a non-parametric pooled analysis of all cod stocks on the European Shelf south of 62°N, it is shown here that environmental variability (as represented by the North Atlantic Oscillation) only has a significant effect on recruitment when the spawning stock is low. This has implications for fisheries management strategies, and for rates of stock recovery, which will be very dependent on environmental conditions.


2020 ◽  
Vol 77 (1) ◽  
pp. 113-123 ◽  
Author(s):  
Christian Irgens ◽  
Arild Folkvord ◽  
Håkon Otterå ◽  
Olav S. Kjesbu

Specific impacts of somatic growth, sexual maturation, and spawning events on otolith zone formation in Atlantic cod (Gadus morhua) were assessed in a 33-month tank experiment, using Barents Sea cod and Norwegian coastal cod. High and low feeding ration combinations were used to mimic environmental stressors in the field. For both stocks, apparent macrostructural “spawning zones” in otoliths are registered in statutory stock monitoring programs to estimate age at maturity, thus adding key information to stock biomass assessments. We found that substantial energy investments in reproduction caused reductions in otolith growth and altered proportional width between translucent and opaque zones. These effects, however, were only statistically significant among individuals with high reproductive investments, while otoliths from individuals with low investments did not differ from the otoliths for immatures. Reproduction may thus not necessarily induce spawning zones, and alternatively, spawning zones may not necessarily reflect reproduction. Altogether, this suggests that the individual energy level, as a premise for metabolic activity, plays a key role in the formation of such zones and thus is related to environmental conditions.


1967 ◽  
Vol 24 (1) ◽  
pp. 145-190 ◽  
Author(s):  
D. J. Garrod

By reason of its geographical distribution, the Arcto-Norwegian cod (Gadus morhua) supports three distinct fisheries, two feeding fisheries in the Barents Sea and at Bear Island–Spitsbergen, and a spawning fishery off the Norway coast. In the past this diversity of fishing on the one stock has made it difficult to unify all the data to give an overall description of post-war changes in the stock. In this contribution three modifications of conventional procedures are introduced which enable this to be done. These are: (i) a system of weighting the catch per unit effort data from each fishery to a level of comparability; (ii) a more rigorous definition of the effective fishing effort on each age-group; (iii) a method of estimation of the effective fishing effort on partially recruited age-groups.Using these methods the analysis presents the effects of fishing on each fishery in the context of its effect on the total stock, and at the same time it indicates ways in which factors other than fishing may have influenced the apparent abundance of the stock. The treatment of the data is also used to derive estimates of spawning stock and recruitment of 3-year-old cod for subsequent analysis of stock–recruitment relationships.


Sign in / Sign up

Export Citation Format

Share Document