Genetic diversity in bambara groundnut (Vigna subterranea (L.) Verdc) landraces revealed by AFLP markers

Genome ◽  
2002 ◽  
Vol 45 (6) ◽  
pp. 1175-1180 ◽  
Author(s):  
F J Massawe ◽  
M Dickinson ◽  
J A Roberts ◽  
S N Azam-Ali

Bambara groundnut (Vigna subterranea (L.) Verdc), an African indigenous legume, is popular in most parts of Africa. The present study was undertaken to establish genetic relationships among 16 cultivated bambara groundnut landraces using fluorescence-based amplified fragment length polymorphism (AFLP) markers. Seven selective primer combinations generated 504 amplification products, ranging from 50 to 400 bp. Several landrace-specific products were identified that could be effectively used to produce landrace-specific markers for identification purposes. On average, each primer combination generated 72 amplified products that were detectable by an ABI Prism 310 DNA sequencer. The polymorphisms obtained ranged from 68.0 to 98.0%, with an average of 84.0%. The primer pairs M-ACA + P-GCC and M-ACA + P-GGA produced more polymorphic fragments than any other primer pairs and were better at differentiating landraces. The dendrogram generated by the UPGMA (unweighted pair-group method with arithmetic averaging) grouped 16 landraces into 3 clusters, mainly according to their place of collection or geographic origin. DipC1995 and Malawi5 were the most genetically related landraces. AFLP analysis provided sufficient polymorphism to determine the amount of genetic diversity and to establish genetic relationships in bambara groundnut landraces. The results will help in the formulation of marker-assisted breeding in bambara groundnut.Key words: under-utilized, African legume, molecular markers.

2021 ◽  
Vol 7 (9) ◽  
pp. 713
Author(s):  
Abdelhameed Elameen ◽  
Svein Stueland ◽  
Ralf Kristensen ◽  
Rosa F. Fristad ◽  
Trude Vrålstad ◽  
...  

Saprolegnia parasitica is recognized as one of the most important oomycetes pests of salmon and trout species. The amplified fragment length polymorphism (AFLP) and method sequence data of the internal transcribed spacer (ITS) were used to study the genetic diversity and relationships of Saprolegnia spp. collected from Canada, Chile, Japan, Norway and Scotland. AFLP analysis of 37 Saprolegnia spp. isolates using six primer combinations gave a total of 163 clear polymorphic bands. Bayesian cluster analysis using genetic similarity divided the isolates into three main groups, suggesting that there are genetic relationships among the isolates. The unweighted pair group method with arithmetic mean (UPGMA) and principal coordinate analysis (PCO) confirmed the pattern of the cluster analyses. ITS analyses of 48 Saprolegnia sequences resulted in five well-defined clades. Analysis of molecular variance (AMOVA) revealed greater variation within countries (91.01%) than among countries (8.99%). We were able to distinguish the Saprolegnia isolates according to their species, ability to produce oogonia with and without long spines on the cysts and their ability to or not to cause mortality in salmonids. AFLP markers and ITS sequencing data obtained in the study, were found to be an efficient tool to characterize the genetic diversity and relationships of Saprolegnia spp. The comparison of AFLP analysis and ITS sequence data using the Mantel test showed a very high and significant correlation (r2 = 0.8317).


Plant Disease ◽  
2008 ◽  
Vol 92 (12) ◽  
pp. 1616-1624 ◽  
Author(s):  
Tjasa Gril ◽  
Franci Celar ◽  
Alenka Munda ◽  
Branka Javornik ◽  
Jernej Jakse

We analyzed with an amplified fragment length polymorphism (AFLP) marker system the genetic diversity and relationships among 67 Monilinia laxa isolates obtained from different host plants. From a total of 1,089 amplified bands scored using 20 primer combinations with two selective nucleotides, 354 were polymorphic and further used in genetic diversity analysis. Genetic relationships among isolates were assessed with different phenetic approaches, including unweighted pair group method with arithmetic mean clustering and principal coordinate analysis; the population's differentiation estimate was analyzed by molecular variance; and model-based clustering was employed to infer population structure. All four analyses clearly showed significant differences between isolates from apple trees and isolates from other host plants. No further grouping according to any other host plant was observed. The results indicate host specialization of apple isolates and support the taxonomic grouping of apple isolates.


Genome ◽  
2001 ◽  
Vol 44 (6) ◽  
pp. 995-999 ◽  
Author(s):  
H I Amadou ◽  
P J Bebeli ◽  
P J Kaltsikes

Random amplified polymorphic DNA (RAPD) markers were used to assess genetic diversity in Bambara groundnut (Vigna subterranea L.) germplasm using 25 African accessions from the collection in the International Institute for Tropical Agriculture, Ibadan, Nigeria. Fifty random decamer primers were screened to assess their ability to detect polymorphism in bambara; 17 of them were selected for this study. Considerable genetic diversity was found among the V. subterranea accessions studied. The relationships among the 25 accessions were studied by cluster analysis. The dendrograms showed two main groups of accessions mainly along the lines of their geographic origin. It is concluded that RAPD can be used for germplasm classification in bambara groundnut and hence for improving this crop.Key words: germplasm, PCR, RAPD, Vigna subterranea.


2011 ◽  
Vol 46 (9) ◽  
pp. 1035-1044 ◽  
Author(s):  
Patrícia Coelho de Souza Leão ◽  
Sérgio Yoshimitsu Motoike

The objective of this work was to analyze the genetic diversity of 47 table grape accessions, from the grapevine germplasm bank of Embrapa Semiárido, using 20 RAPD and seven microsatellite markers. Genetic distances between pairs of accessions were obtained based on Jaccard's similarity index for RAPD data and on the arithmetic complement of the weighted index for microsatellite data. The groups were formed according to the Tocher's cluster analysis and to the unweighted pair‑group method with arithmetic mean (UPGMA). The microsatellite markers were more efficient than the RAPD ones in the identification of genetic relationships. Information on the genetic distance, based on molecular characteristics and coupled with the cultivar agronomic performance, allowed for the recommendation of parents for crossings, in order to obtain superior hybrids in segregating populations for the table grape breeding program of Embrapa Semiárido.


Genome ◽  
2003 ◽  
Vol 46 (1) ◽  
pp. 51-58 ◽  
Author(s):  
A Segovia-Lerma ◽  
R G Cantrell ◽  
J M Conway ◽  
I M Ray

Improving commercial utilization of perennial Medicago collections requires developing approaches that can rapidly and accurately characterize genetic diversity among large numbers of populations. This study evaluated the potential of using amplified fragment length polymorphism (AFLP) DNA markers, in combination with DNA bulking over multiple genotypes, as a strategy for high-throughput characterization of genetic distances (D) among alfalfa (Medicago sativa L.) accessions. Bulked DNA templates from 30 genotypes within each of nine well-recognized germplasms (African, Chilean, Flemish, Indian, Ladak, Medicago sativa subsp. falcata, Medicago sativa subsp. varia, Peruvian, and Turkistan) were evaluated using 34 primer combinations. A total of 3754 fragments were identified, of which 1541 were polymorphic. The number of polymorphic fragments detected per primer combination ranged from 20 to 85. Pairwise D estimates among the nine germplasms ranged from 0.52 to 1.46 with M. sativa subsp. falcata being the most genetically dissimilar. Unweighted pair-group method arithmetic average (UPGMA) analysis of the marker data produced two main clusters, (i) M. sativa subsp. sativa and M. sativa subsp. varia, and (ii) M. sativa subsp. falcata. Cluster-analysis results and D estimates among the Chilean, Peruvian, Flemish, and M. sativa subsp. varia germplasms supported the hypothesis that Peruvian was more similar to original Spanish introductions into Central and South America than Chilean. Hierarchical arrangement of the nine germplasms was supported by their respective geographic, subspecific, and intersubspecific hybrid origins. Subsets of as few as seven highly informative primer pairs were identified that produced comparable D estimates and similar heirarchical arrangements compared with the complete dataset. The results indicate that use of primer-pair subsets for AFLP analysis of bulk DNA templates could serve as a high-throughput system for accurately characterizing genetic diversity among large numbers of alfalfa populations.Key words: Medicago sativa, DNA bulking, genetic distance.


2004 ◽  
Vol 129 (5) ◽  
pp. 690-697 ◽  
Author(s):  
Pachanoor S. Devanand ◽  
Jianjun Chen ◽  
Richard J. Henny ◽  
Chih-Cheng T. Chao

Philodendrons (Philodendron Schott) are among the most popular tropical ornamental foliage plants used for interior decoration. However, limited information is available on the genetic relationships among popular Philodendron species and cultivars. This study analyzed genetic similarity of 43 cultivars across 15 species using amplified fragment length polymorphism (AFLP) markers with near infrared fluorescence labeled primers. Forty-eight EcoR I + 2/Mse I + 3 primer set combinations were screened, from which six primer sets were selected and used in this investigation. Each selected primer set generated 96 to 130 scorable fragments. A total of 664 AFLP fragments were detected, of which 424 (64%) were polymorphic. All cultivars were clearly differentiated by their AFLP fingerprints, and the relationships were analyzed using the unweighted pair-group method of arithmetic average cluster analysis (UPGMA) and principal coordinated analysis (PCA). The 43 cultivars were divided into five clusters. Cluster I comprises eight cultivars with arborescent growth style. Cluster II has only one cultivar, `Goeldii'. There are 16 cultivars in cluster III, and most of them are self-heading interspecific hybrids originated from R.H. McColley's breeding program in Apopka, Fla. Cluster IV contains 13 cultivars that exhibit semi-vining growth style. Cluster V has five cultivars that are true vining in morphology, and they have lowest genetic similarity with philodendrons in other clusters. Cultivated philodendrons are generally genetically diverse except the self-heading hybrids in cluster III that were mainly developed using self-heading and semi-vining species as parents. Seven hybrid cultivars have Jaccard's similarity coefficients of 0.88 or higher, suggesting that future hybrid development needs to select parents with diverse genetic backgrounds.


Plant Disease ◽  
2021 ◽  
Author(s):  
Marwa Laribi ◽  
Alireza Akhavan ◽  
Sarrah M'Barek ◽  
Amor Yahyaoui ◽  
Stephen Ernest Strelkov ◽  
...  

Pyrenophora tritici-repentis (Ptr) causes tan spot, an important foliar disease of wheat. A collection of Ptr isolates from Tunisia, located in one of the main secondary centers of diversification of durum wheat, was tested for phenotypic race classification based on virulence on a host differential set, and for the presence of the necrotrophic effector (NE) genes ToxA, ToxB , and toxb by PCR analysis. While races 2, 4, 5, 6, 7, and 8 were identified according to their virulence phenotypes, PCR testing indicated the presence of ‘atypical’ isolates that induced necrosis on the wheat differential ‘Glenlea’, but lacked the expected ToxA gene, suggesting the involvement of other NEs in the Ptr/wheat interaction. Genetic diversity and the Ptr population structure were explored further by examining 59 Tunisian isolates and 35 isolates from Algeria, Azerbaijan, Canada, Iran, and Syria using 24 simple sequence repeat markers. Average genetic diversity, overall gene flow and percentage polymorphic loci were estimated as 0.58, 2.09 and 87%, respectively. Analysis of molecular variance showed that 81% of the genetic variance occurred within populations and 19% between populations. Cluster analysis by the unweighted pair group method indicated that ToxB- isolates grouped together and were distantly related to ToxB+ isolates. Based on Nei’s analysis, the global collection clustered into two distinct groups according to their region of origin. The results suggest that both geographic origin and the host-specificity imposed by different NEs can lead to differentiation among Ptr populations.


2004 ◽  
Vol 1 (2) ◽  
pp. 73-78 ◽  
Author(s):  
Shang Hai-Ying ◽  
Zheng You-Liang ◽  
Wei Yu-Ming ◽  
Wu Wei ◽  
Yan Ze-Hong

AbstractGenetic diversity and relationships among 21 accessions of Secale L., including three species and 10 subspecies, were evaluated using RAMP markers. Forty-one out of 80 (50.5%) RAMP primers, which produced clear and polymorphic bands, were selected for PCR amplification of genomic DNA. A total of 446 bands were amplified from the 41 primers, and 428 of these bands (about 96%) were polymorphic. Three to 19 polymorphic bands could be amplified from each primer, with an average of 10.4 bands. The RAMP-based genetic similarity (GS) values among the 21 Secale accessions ranged from 0.266 to 0.658, with a mean of 0.449. A high level of genetic variation was found between or within the wild populations and the cultivars. Based on the GS matrix, a dendrogram was constructed using the unweighted pair group method with arithmetic average (UPGMA). All 21 accessions could be distinguished by RAMP markers. Clustering results showed that the genetic diversity of Secale based on RAMP markers was correlated with geographical distribution. Six rye cultivars, originating from Poland, Portugal, Mexico, Hungary, Armenia and Ukraine, were clustered into one group. The six countries are all located in the transitional region of broad-leaf forests between maritime and continental temperate zones, with narrow latitude span. In comparison, the other five cultivars from countries scattered over a region with large latitude span were distributed within different groups or subgroups. Genetic relationships based on RAMP markers had great deviation from the original taxonomy. Some subspecies of the same species were distributed within different groups, while some accessions of different species were closely clustered into one subgroup. These results suggest that RAMP markers could be an effective technique for detecting genetic diversity among Secale and give some useful information about its phylogenic relationships.


1996 ◽  
Vol 26 (8) ◽  
pp. 1454-1462 ◽  
Author(s):  
Naoki Tani ◽  
Nobuhiro Tomaru ◽  
Masayuki Araki ◽  
Kihachiro Ohba

Japanese stone pine (Pinuspumila Regel) is a dominant species characteristic of alpine zones of high mountains. Eighteen natural populations of P. pumila were studied in an effort to determine the extent and distribution of genetic diversity. The extent of genetic diversity within this species was high (HT = 0.271), and the genetic differentiation among populations was also high (GST = 0.170) compared with those of other conifers. In previous studies of P. pumila in Russia, the genetic variation within the species was also high, but the genetic differentiation among populations was low. We infer that this difference originates from differences in geographic distribution and ecological differences between the two countries. The genetic variation within each population tended, as a whole, to be smaller within marginal southern populations than within northern populations. Genetic relationships among populations reflect the geographic locations, as shown by unweighted pair-group method with arithmetic means and neighbor-joining phylogenetic trees.


2016 ◽  
Vol 70 (2) ◽  
Author(s):  
Nurita TORUAN-MATHIUS ◽  
Z LALU ◽  
. SOEDARSONO ◽  
Hajrial ASWIDINNOOR

SummaryCorynespora leaf fall disease (CFLD) caused by the fungus Corynespora casiicola is one of the most important diseases of Hevea brasiliensis.CFLD was reported to cause serious damage on rubber productivity, and the disease has became more apparent in the recent years. The objectives of this study were (i) to analyze genetic similarities among several rubber clones resistance and susceptible to CFLD based on RAPD and AFLP markers, (ii) to compare the effectiveness of RAPD and AFLP markers. DNA genomic was extracted from young leaves of RRIM600, GT1, PB260, RRIC100, BPM1 (belongs to resistance group), PPN2058, PPN2444, and PPN2447 (belongs to susceptible group). Data were analyzed with NTSYS-pc program version 2.10, and a dendogram was created by cluster analysis using the unweighted pair group method on the basis of arithmetic averages (UPGMA). The results show that marker index AFLP (3.57) is higher than RAPD (1.02), it means that AFLP is more effective compared to RAPD. The average of genetic similarity AFLP (0.63) lower than RAPD (0.67) it means that AFLP is more discriminative than RAPD. Dendogram based on AFLP and RAPD were the best with at 0.65 level of genetic similarity cluster divided into two cluster A and B. Cluster A with a sub group A1 consisted of RRIC100, PPN2058 and PPN244 are belongs to resistance group), and sub group A2 consisted of (RRIM600, GT1, BPM1 and PB 260 are belongs to susceptible group), while cluster B only PPN2447 is belong to susceptible group. AFLP analysis show that one AFLP band of 110 bp resulting from PCR amplification using E-ACA/M-CAG (E-ACA/M-CAG110) primer pairs present in resistance clones, but absent in the susceptible clones. Meanwhile, application of 50 random primers decamer in RAPD analysis did not showed the specific band for either one of the group. It is concluded that AFLP marker analysis using EACA/M-CAG primer pair have a potential to differentiate resistance and the susceptible rubber clones to Corynespora. For the confirmation of the results more resistance and susceptible clones are needed for further test. RingkasanPenyakit gugur daun Corynespora (PDGC) yang disebabkan oleh patogen Corynespora asiicola, merupakan salah satu penyakit penting pada tanaman karet (Hevea brasiliensis). PGDC menyebabkan penurunan yang cukup serius terhadap produktivitas tanaman karet. Tujuan penelitian ini adalah untuk (i) mengidentifikasi kesamaan genetik antar beberapa klon yang tergolong tahan dan rentan dengan marka RAPD dan AFLP, dan (ii) mempelajari efektivitas kedua marka tersebut. DNA genomik diekstraksi dari daun muda klon RRIM600, GT1, PB260, BPM1, RRIC100 (tergolong resisten), PPN2058, PPN2444, dan PPN2447 (tergolong rentan ). Data dianalisis dengan NTSYS-pc program versi 2.10. Dendogram dibuat dengan analisis pengelompokan menurut metode Unweighted Pair Group berbasis Arithmetic Avarages (UPGMA). Hasil yang diperoleh menunjukkan bahwa marka indeks AFLP (3,57) lebih tinggi daripada RAPD (1,02), sehingga AFLP lebih efektif dibandingkan dengan RAPD. Rata-rata perkiraan kesamaan genetik AFLP (0,63) sedikit lebih rendah dari RAPD (0,67) sehingga AFLP relatif lebih diskriminatif daripada RAPD. Dendogram berdasarkan integrasi AFLP dan RAPD adalah yang paling baik, dimana pada rata-rata perkiraan kesamaan genetik (0,65) terbentuk dua kelompok yaitu A dan B. Kelompok A terdiri atas sub sub kelompok A1 yang beranggotakan (RRIC100, PPN2058 dan PPN244 yang tergolong resisten), dan sub group A2 yang beranggotakan (RRIM600, GT1, BPM1 dan PB 260 yang tergolong rentan) Sedang kelompok B beranggotakan hanya PN2447 yang tergolong rentan. Analisis AFLP menghasilkan satu pita AFLP dengan menggunakan pasangan primer EACA/M-CG (E-ACA/M-CAG110 ) secara konsisten diperoleh dari klon karet yang resisten, namun tidak ditemukan pada klon yang rentan. Sementara itu, aplikasi 50 primer acak dekamer dalam analisis RAPD tidak menghasilkan pita spesifik untuk kedua kelompok yang diuji. Disimpulkan bahwa analisis AFLP menggunakan pasangan primer EACA/M-CAG berpotensi untuk membedakan klon karet yang resisten dan rentan terhadap Corynespora. Untuk mengkorfirmasi hasil yang diperoleh, perlu dilakukan pengujian terhadap klon-klon yang resisten dalam jumlah yang lebih banyak


Sign in / Sign up

Export Citation Format

Share Document