scholarly journals Potential eutrophication of the Rideau River by an urban drainage waterway

1981 ◽  
Vol 8 (2) ◽  
pp. 165-172
Author(s):  
M. H. Habicht ◽  
K. Adamowski ◽  
A. C. Middleton

The chemical characterization and algal bioassay were used in order to study the eutrophication potential of an urban drain (Saw Mill Creek) on the Rideau River in Ottawa. Samples were collected during 8 different peak storm flow conditions.Although nutrient concentrations were observed to increase during storm flows, peak flow concentrations for total phosphorus and nitrogen averaged only 0.190 mg/L and 2.5 mg/L respectively. These concentrations of nutrients did not significantly stimulate algal growth at the 5% addition level. However, at the 10 and 20% addition levels, bioassays produced on the average 0.96 and 1.96 mg/L of algal standing biomass (measured as chlorophyll-a) respectively. These values were significantly different (at 95% confidence level) from the average biomass of 0.50 mg/L produced by the Rideau samples. In the analysis, a linear relationship between algal biomass and nutrient addition was assumed.Alum treatment of Saw Mill Creek, simulated by the jar test, was generally unable to reduce the algal growth when compared with that at any of the addition levels. Thus it was concluded that treatment would have no significant effect on algal growth at low flows of Saw Mill Creek.However, a reduction in the volume of storm flow of the Saw Mill Creek could have a significant effect on algal growth in the Rideau River.

2009 ◽  
Vol 6 (12) ◽  
pp. 2935-2948 ◽  
Author(s):  
T. J. S. Cox ◽  
T. Maris ◽  
K. Soetaert ◽  
D. J. Conley ◽  
S. Van Damme ◽  
...  

Abstract. We report a 40 year record of eutrophication and hypoxia on an estuarine ecosystem and its recovery from hypereutrophication. After decades of high inorganic nutrient concentrations and recurring anoxia and hypoxia, we observe a paradoxical increase in chlorophyll-a concentrations with decreasing nutrient inputs. We hypothesise that algal growth was inhibited due to hypereutrophication, either by elevated ammonium concentrations, severe hypoxia or the production of harmful substances in such a reduced environment. We study the dynamics of a simple but realistic mathematical model, incorporating the assumption of algal growth inhibition. It shows a high algal biomass, net oxygen production equilibrium with low ammonia inputs, and a low algal biomass, net oxygen consumption equilibrium with high ammonia inputs. At intermediate ammonia inputs it displays two alternative stable states. Although not intentional, the numerical output of this model corresponds to observations, giving extra support for assumption of algal growth inhibition. Due to potential algal growth inhibition, the recovery of hypereutrophied systems towards a classical eutrophied state, will need reduction of waste loads below certain thresholds and will be accompanied by large fluctuations in oxygen concentrations. We conclude that also flow-through systems, heavily influenced by external forcings which partly mask internal system dynamics, can display multiple stable states.


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1409 ◽  
Author(s):  
Hye Won Lee ◽  
Yong Seok Lee ◽  
Jonggun Kim ◽  
Kyoung Jae Lim ◽  
Jung Hyun Choi

Sediment plays an important role in the water quality of a lake by acting as both a nutrient source and sink. The amount of phosphorus and nitrogen in the water depends on the internal load from the sediment as well as the external load. To estimate the effects of sediment load on the water quality of a reservoir, we applied a three-dimensional hydrodynamic and transport model based on the benthic chamber experimental results at Euiam Lake, South Korea. As shown in the sensitivity analysis results, the eutrophication period could be significantly extended by a change of phosphorus flux rates from the sediments. The increased phosphorus flux from the sediments intensifies the algal growth of Euiam Lake, which could cause serious algal bloom during spring and fall. This study provides information on nutrient concentrations in the sediment of Euiam Lake, verifies the role of the sediment as a source or sink of nutrients, and evaluates the effect of sediment release of nutrients and contaminants on water quality. This research is a useful tool in determining the effects of internal load in lakes and establishing the operation guideline for sediment management in order to maintain feasible water quality for beneficial use.


2013 ◽  
Vol 68 (6) ◽  
pp. 1280-1287 ◽  
Author(s):  
P. Han ◽  
K. Vijayaraghavan ◽  
S. Reuben ◽  
E. S. Estrada ◽  
U. M. Joshi

One of the most effective mitigative approaches to eutrophication is the reduction of nutrient loading into water bodies. Bioremediation presents an economically viable and ecologically sustainable technology to nutrient pollution control taking advantage of the remarkable ability of plants and their associated microbial community to assimilate and remove nutrients from the environment. In this study, four emergent macrophytes (Cyperus haspan, Pandanus amaryllifolius, Pontederia cordata and Thalia geniculata) and two floating plants (Hygroryza aristata and Pistia stratiotes) were deployed in bank-side treatment beds and comparatively assessed for their remediative capabilities for nutrient control. P. stratiotes exhibited the highest removal efficiency for both nitrate and phosphate among the six plant species studied. Emergent macrophytes, P. amaryllifolius, C. haspan and P. cordata, were also found to be highly effective in nutrient uptake exhibiting removal efficiencies up to 100%. With the exception of T. geniculata, depletion of nutrients as a result of plant uptake significantly impeded the natural colonization of algae invariably leading to improvements in water quality in terms of turbidity and pH. Suppression of algae proliferation by T. geniculata was not preceded by a reduction in nutrient concentrations suggesting that T. geniculata may be directly inhibiting algal growth through allelopathy.


1982 ◽  
Vol 9 (2) ◽  
pp. 356-356
Author(s):  
M. M. Habicht ◽  
K. Adamowski ◽  
A. C. Middleton
Keyword(s):  

2006 ◽  
Vol 63 (12) ◽  
pp. 2621-2638 ◽  
Author(s):  
Lilian B Busse ◽  
Juliet C Simpson ◽  
Scott D Cooper

We surveyed algal cover, algal biomass, and physical and chemical factors at 14 sites representing a range of land use types in the Malibu Creek watershed in southern California, USA. We also conducted nutrient diffuser substrate experiments to identify the nutrient limiting algal growth. Algal biomass increased with urbanization, reaching very high levels in the most urbanized streams (up to 322.4 mg chlorophyll a·m-2). Total nitrogen, total phosphorus, and benthic and total chlorophyll concentrations were positively correlated with the proportion of upstream land covered by impervious surfaces. Relationships between land use and algal biomass or nutrient concentrations were evaluated at 100 m, 500 m, and whole subwatershed scales. The closest relationships were found at the 500 m scale, where 56% of the variation in total chlorophyll could be explained by the proportion of land within a 500 m radius upstream covered by impervious surfaces. Floating macroalgae were observed in the summer in pools with high nutrient and light levels, whereas benthic algal biomass was positively related to total phosphorus concentrations and current speed. Other methods of determining nutrient limitation (nutrient diffuser substrate experiment, molar N/P ratios in stream water) produced conflicting results, possibly because algal growth was saturated by high nutrient levels at some of the study sites.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6118 ◽  
Author(s):  
Xiaolin Chen ◽  
Yuhao Sun ◽  
Hong Liu ◽  
Song Liu ◽  
Yukun Qin ◽  
...  

The edible seaweed Caulerpa lentillifera, a powerful natural food source that is rich in protein, minerals, dietary fibers, vitamins, saturated fatty acids and unsaturated fatty acids, has been mass cultured in some Asian countries and has been the focus of researchers in recent years. Here, the operational conditions of its culture, application in wastewater treatment, and bioactive components are summarized and comparatively analyzed. Based on previous studies, salinity, nutrient concentrations, irradiance and temperature are stress factors for algal growth. Moreover, dried Caulerpa lentillifera seaweed is efficient in the biosorption of heavy metals and cationic dyes in wastewater, and fresh seaweed can be introduced as a biofilter in aquaculture system treatment. In addition, among the rich bioactive compounds in Caulerpa lentillifera, the phenolic compounds show the potential ability for regulating glucose metabolism in vivo. Polysaccharides and oligosaccharides exhibit anticoagulant, immunomodulatory effects and cancer-preventing activity. Siphonaxanthin is a compound with attractive novel functions in cancer-preventing activity and lipogenesis-inhibiting effects. Furthermore, the antioxidant activity of siphonaxanthin extracted from Caulerpa lentillifera could be stronger than that of astaxanthin. This review offers an overview of studies of Caulerpa lentillifera addressing various aspects including cultivation, wastewater treatment and biological active components which may provide valuable information for the cultivation and utilization of this green alga.


Author(s):  
Pedro Bastos De Macedo Carneiro ◽  
Jamile Ulisses Pereira ◽  
Helena Matthews-Cascon

The present paper investigates standing stock variations of Halimeda opuntia on a sandstone reef of the South-west Atlantic Ocean, in order to better understand the role of this seaweed as a CaCO3 producer. The study was conducted over two 3-month periods, using photo quadrats to analyse the coverage area, and destructive sampling to quantify area-specific biomass and CaCO3 percentage. The alga occupied 2.4% of the substrate (4464 m2), growing as clumps with an average biomass of 1.59 kg m−2, resulting in a standing stock of 7097.8 kg of alga. This standing stock varied with environmental conditions, particularly wind speed. Assuming an exponential model for these variations, H. opuntia produced at least 13,050.14 kg (54.37 g m−2 day−1) of carbonate sediments. There was a positive correlation between changes in standing stock and coverage, but not with area-specific biomass. This suggests that net algal growth results in the occupation of new spaces, with minimal increases in height or segment density. Therefore monitoring coverage should complement traditional individual-based methods for estimating Halimeda growth and production. Combined, these approaches should result in more accurate models of the role of this alga on marine carbonate budgets.


2008 ◽  
Vol 59 (6) ◽  
pp. 467 ◽  
Author(s):  
Travis S. Elsdon ◽  
Karin E. Limburg

Although it is well known that land use affects nutrient dynamics and algal growth in streams, the responses to different durations of nutrient supply are poorly understood. The associations of benthic (periphyton-dominated) biomass with concentrations of dissolved nitrogen and phosphorus in rural and urban streams in New York were quantified. Biomass was significantly greater (2-fold) in the urban compared with the rural stream, which was associated with differences in dissolved nutrients. Experimental field enrichment of nutrient concentrations and duration of exposure altered benthic periphyton. Increasing nutrients by 60–99% of ambient concentrations increased periphyton percentage cover and biomass. Periphyton abundance also increased with increasing duration of exposure to nutrients (2, 4 and 8 weeks); however, short-term pulses of nutrients (2 weeks) had no significant effect in the rural stream. These results indicate that effective management of nutrient delivery, by reducing time periods of high nutrient load, will minimise impacts to benthic environments.


Sign in / Sign up

Export Citation Format

Share Document