Estimation of bridge static response and vehicle weights by frequency response analysis

1998 ◽  
Vol 25 (4) ◽  
pp. 631-639 ◽  
Author(s):  
G Thater ◽  
P Chang ◽  
D R Schelling ◽  
C C Fu

A methodology is developed to more accurately estimate the static response of bridges due to moving vehicles. The method can also be used to predict dynamic responses induced by moving vehicles using weigh-in-motion (WIM) techniques. Historically, WIM is a well-developed technology used in highway research, since it has the advantage of allowing for the stealthy automatic collection of weight data for heavy trucks. However, the lack of accuracy in determining the dynamic effect in bridges has limited the potential for its use in estimating the fatigue life of bridge structures and their components. The method developed herein amends the current WIM procedures by filtering the dynamic responses accurately using the Fast Fourier Transform (FFT). Example applications of the proposed method are shown by using computer-generated data. The method is fast and improves the predicted truck weight up to 5% of the actual weight, as compared to errors up to 10% using the current WIM methods.Key words: weigh-in-motion, digital filters, FFT, bridge dynamics, in-service testing.

2021 ◽  
Vol 11 (2) ◽  
pp. 745
Author(s):  
Sylwia Stawska ◽  
Jacek Chmielewski ◽  
Magdalena Bacharz ◽  
Kamil Bacharz ◽  
Andrzej Nowak

Roads and bridges are designed to meet the transportation demands for traffic volume and loading. Knowledge of the actual traffic is needed for a rational management of highway infrastructure. There are various procedures and equipment for measuring truck weight, including static and in weigh-in-motion techniques. This paper aims to compare four systems: portable scale, stationary truck weigh station, pavement weigh-in-motion system (WIM), and bridge weigh-in-motion system (B-WIM). The first two are reliable, but they have limitations as they can measure only a small fraction of the highway traffic. Weigh-in-motion (WIM) measurements allow for a continuous recording of vehicles. The presented study database was obtained at a location that allowed for recording the same traffic using all four measurement systems. For individual vehicles captured on a portable scale, the results were directly compared with the three other systems’ measurements. The conclusion is that all four systems produce the results that are within the required and expected accuracy. The recommendation for an application depends on other constraints such as continuous measurement, installation and operation costs, and traffic obstruction.


Author(s):  
Ye Liu ◽  
Yan Han ◽  
Peng Hu ◽  
C. S. Cai ◽  
Xuhui He

In this study, the influences of wind barriers on the aerodynamic characteristics of trains (e.g. a CRH2 train) on a highway-railway one-story bridge were investigated by using wind pressure measurement tests, and a reduction factor of overturning moment coefficients was analyzed for trains under wind barriers. Subsequently, based on a joint simulation employing SIMPACK and ANSYS, a wind–train–track–bridge system coupled vibration model was established, and the safety and comfort indexes of trains on the bridge were studied under different wind barrier parameters. The results show that the mean wind pressures and fluctuating wind pressures on the trains’ surface decrease generally if wind barriers are used. As a result, the dynamic responses of the trains also decrease in the whole process of crossing the bridge. Of particular note, the rate of the wheel load reductions and lateral wheel-axle forces can change from unsafe states to relative safe states due to the wind barriers. The influence of the porosity of the wind barriers on the mean wind pressures and fluctuating wind pressures on the windward sides and near the top corner surfaces of the trains are significantly greater than the influence from the height of the wind barriers. Within a certain range, decreasing the wind barrier porosities and increasing the wind barrier heights will significantly reduce the safety and comfort index values of trains on the bridge. It is found that when the porosity of the wind barrier is 40%, the optimal height of the wind barrier is determined as approximately 3.5[Formula: see text]m. At this height, the trains on the bridges are safer and run more smoothly and comfortably. Besides, through the dynamic response analysis of the wind–train–track–bridge system, it is found that the installation of wind barriers in cases with high wind speeds (30[Formula: see text]m/s) may have an adverse effect on the vertical vibration of the train–track–bridge system.


2013 ◽  
Vol 405-408 ◽  
pp. 1674-1677
Author(s):  
Bo Yu ◽  
Di Liu ◽  
Lu Feng Yang

Peak displacement is one of the most important parameters for the performance based seismic design of bridge structure, while the peak displacement is often significantly impacted by the P-Δ effect. In this study, the influence of the P-Δ effect on the statistics of peak displacement of bridge structure was quantificationally investigated based on a series of nonlinear time-history analysis. The bridge structure was idealized as the single degree of freedom (SDOF) system and the hysteretic behaviour was represented by the improved Bouc-Wen model. The statistic analysis was implemented based on the inelastic dynamic responses of the SDOF system under 69 selected earthquake records. The results show that the P-Δ effect has significant impact on the mean and dispersion of peak displacement of bridge structures, especially if the normalized yield strength and the natural vibration period are small.


The empirical analysis of this chapter provides insights into the functioning of the economies of three selected countries. Later in the chapter, the dynamic responses of the model to shocks in indicators of financial development are investigated. To obtain credible impulse response analysis, economic theory is used to set the required identifying restrictions instead of using an “unrestricted” vector autoregressive model. The structural form of the model then is summarised in the chapter by the variance decomposition and impulse response functions. The general results from impulse response functions advocate the theory of financial intermediation arguing that the development of the financial market helps to promote economic growth. Furthermore, the results of variance decomposition shows that different measures of financial development influence the variation of growth variables, particularly investment, savings, and productivity growth.


2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Shuai Jiang ◽  
Xiulong Chen ◽  
Yu Deng

Clearance wear is one of the factors that affects dynamics for mechanical systems. A numerical methodology suitable for modeling and calculation of wear at multiple revolute clearance pairs in the field of the planar multilink mechanism is proposed. In this paper, the 2-DOF nine-bar mechanism considering two revolute clearance joints is regarded as the study object. Normal contact force and friction force models of revolute clearance joints used Lankarani–Nikravesh (L-N) and LuGre models, respectively. The iterative wear prediction process based upon Archard’s model has been applied to calculate wear characteristics. The wear prediction procedure is integrated with multibody dynamics, wear depths at revolute clearance joints are calculated, and the surface of shaft and bearing is reconstructed twice. The dynamic responses of mechanism considering two nonregular revolute clearances caused by wear are studied in depth. The nonlinear characteristics of the mechanism after wear are studied by the phase diagram and Poincaré map. Influences of different initial constant clearance values and different driving speeds on wear of two revolute joints are also researched. The results show that it is necessary to consider the factor of irregular clearances caused by wear in analysis of dynamics of precision mechanisms. Initial constant clearance values and driving speeds have some influence on wear phenomenon. This research provides a theoretical basis for studying dynamics of the planar multilink mechanism considering wear in multiple clearances.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Yan Liang ◽  
Liangliang Li ◽  
Ruimin Mao ◽  
Xiaoye Shi

At present, most of the research studies on the seismic performance of the durability degraded reinforced concrete structure only consider the influence of a single factor. This paper comprehensively considers the factors such as concrete carbonization, steel corrosion, and bond slip performance degradation caused by other durability factors and durability damage repair and studies the influence of the above factors on the seismic performance of bridge structures. Based on the finite element model considering the bond slip and the material parameters of time-varying durability damage, the seismic performance analysis model of the pier is established considering material durability damage repair in different service periods. Then, the effect of material durability damage repair on the seismic performance of the pier is examined. The results show that the displacement of the pier top increases, the curvature of the pier bottom decreases, and the moment-curvature curve pinching phenomenon is further evident when considering the bond slip. When considering the durability damage repair of materials, the curvature considerably decreases (the maximum value is approximately 16.04%) with the extension of the service time of the bridge, and the pier damage is substantially reduced.


Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3460 ◽  
Author(s):  
Hoofar Shokravi ◽  
Hooman Shokravi ◽  
Norhisham Bakhary ◽  
Mahshid Heidarrezaei ◽  
Seyed Saeid Rahimian Koloor ◽  
...  

Bridges are designed to withstand different types of loads, including dead, live, environmental, and occasional loads during their service period. Moving vehicles are the main source of the applied live load on bridges. The applied load to highway bridges depends on several traffic parameters such as weight of vehicles, axle load, configuration of axles, position of vehicles on the bridge, number of vehicles, direction, and vehicle’s speed. The estimation of traffic loadings on bridges are generally notional and, consequently, can be excessively conservative. Hence, accurate prediction of the in-service performance of a bridge structure is very desirable and great savings can be achieved through the accurate assessment of the applied traffic load in existing bridges. In this paper, a review is conducted on conventional vehicle-based health monitoring methods used for bridges. Vision-based, weigh in motion (WIM), bridge weigh in motion (BWIM), drive-by and vehicle bridge interaction (VBI)-based models are the methods that are generally used in the structural health monitoring (SHM) of bridges. The performance of vehicle-assisted methods is studied and suggestions for future work in this area are addressed, including alleviating the downsides of each approach to disentangle the complexities, and adopting intelligent and autonomous vehicle-assisted methods for health monitoring of bridges.


Sign in / Sign up

Export Citation Format

Share Document