Detection of cellulase inhibitor in the wheat bran culture of Aspergillus terreus

1981 ◽  
Vol 27 (12) ◽  
pp. 1334-1340 ◽  
Author(s):  
S. N. Sinha ◽  
B. L. Ghosh ◽  
S. N. Ghose

The presence of a cellulase inhibitor in the wheat bran culture of a fungus is reported for the first time. The inhibitor has a low molecular weight and is relatively stable to heat. It is absent from wheat bran and is not produced in a chemically defined medium. Unlike cellulase inhibitors of plant origin, this inhibitor is not a polyphenol. It inhibits the hydrolysis of cotton to a greater degree than that of filter paper or carboxymethylcellulose. In addition to inhibiting Aspergillus terreus cellulase, it also inhibits a variety of commercial cellulases.

Marine Drugs ◽  
2020 ◽  
Vol 18 (12) ◽  
pp. 608
Author(s):  
Elena V. Girich ◽  
Anton N. Yurchenko ◽  
Olga F. Smetanina ◽  
Phan Thi Hoai Trinh ◽  
Ngo Thi Duy Ngoc ◽  
...  

Low molecular weight secondary metabolites of marine fungi Aspergillus flocculosus, Aspergillus terreus and Penicillium sp. from Van Phong and Nha Trang Bays (Vietnam) were studied and a number of polyketides, bis-indole quinones and terpenoids were isolated. The structures of the isolated compounds were determined by 1D and 2D NMR and HR-ESI-MS techniques. Stereochemistry of some compounds was established based on ECD data. A chemical structure of asterriquinone F (6) was thoroughly described for the first time. Anthraquinone (13) was firstly obtained from a natural source. Neuroprotective influences of the isolated compounds against 6-OHDA, paraquat and rotenone toxicity were investigated. 4-Hydroxyscytalone (1), 4-hydroxy-6-dehydroxyscytalone (2) and demethylcitreoviranol (3) have shown significant increasing of paraquat- and rotenone-treated Neuro-2a cell viability and anti-ROS activity.


2018 ◽  
Vol 1 (4) ◽  
pp. e00057 ◽  
Author(s):  
A.A Chistov ◽  
A.V. Talanova ◽  
M.V. Melnikova ◽  
S.S. Kuznetsova ◽  
E.F. Kolesanova

Low molecular weight chromogenic thrombin peptide substrates, p-nitroanilides of short peptides protected at their N-terminal amino group, were prepared by solid-phase peptide synthesis on polystyrene-divinylbenzene polymer with trityl groups with preliminary attached p-phenylene diamine moiety. After the cleavage from the resin peptide p-aminoanilides were mildly oxidized to p-nitroanilides with the mixture of potassium sulfate and persulfate. Adsorption onto polymer support Bio-Beads SM-2 with further elution by acetonitrile allowed easy separating peptide p-nitroanilides from the oxidizer and obtaining the thrombin chromogenic substrate preparations with the target substance contents of not less than 95% and yields of 30-40%. Thrombin effectively catalyzed hydrolysis of the prepared substrates with KM and Vmax values of 29-134 mM and 0.03-1/16 mM/s, respectively.


2020 ◽  
Vol 81 (2) ◽  
pp. 301-308 ◽  
Author(s):  
Wenzhe Song ◽  
Yu Zhang ◽  
Amir Hossein Hamidian ◽  
Min Yang

Abstract The biodegradation of polyacrylamide (PAM) includes the hydrolysis of amino groups and cleavage of the carbon chain; however, the effect of molecular weight on the biodegradation needs further investigations. In this study, biodegradation of low molecular weight PAM (1.6 × 106 Da) was evaluated in two aerobic (25 °C and 40 °C) and two anaerobic (35 °C and 55 °C) reactors over 100 days. The removal of the low molecular weight PAM (52.0–52.6%) through the hydrolysis of amino groups by anaerobic treatment (35 °C and 55 °C) was much higher than that of the high molecular weight (2.2 × 107 Da, 11.2–17.0%) observed under the same conditions. The molecular weight was reduced from 1.6 × 106 to 6.45–7.42 × 105 Da for the low molecular weight PAM, while the high molecular weight PAM declined from 2.2 × 107 to 3.76–5.87 × 106 Da. The results showed that the amino hydrolysis of low molecular weight PAM is easier than that of the high molecular weight one, while the cleavage of its carbon chain is still difficult. The molecular weights of PAM in the effluents from the two aerobic reactors (25 °C and 40 °C) were further reduced to 4.31 × 105 and 5.68 × 105 Da by the biofilm treatment, respectively. The results would be useful for the management of wastewater containing PAM.


Author(s):  
Daniele Santini ◽  
Fabrizio Citarella ◽  
Bruno Vincenzi ◽  
Marco Russano ◽  
Giuseppe Tonini ◽  
...  

Abstract The use of direct oral anticoagulant in cancer patients is an emerging issue, which seems to be an alternative to low molecular weight heparin. Every year several new drugs are approved as anticancer treatment with possible drug-drug interaction with other drugs such as oral anticoagulant. We describe, for the first time, a case of neutropenia and thrombocytopenia in a patient in treatment with cabozantinib, a novel anticancer treatment used in metastatic renal cell carcinoma, and apixaban with promptly resumption of the toxicity after the interruption of cabozantinib. This case suggest a possible interaction between these two pharmaceutical agents, which merit caution considering the spreading of the two drugs.


RSC Advances ◽  
2016 ◽  
Vol 6 (58) ◽  
pp. 53415-53420 ◽  
Author(s):  
Ch. Siva Kesava Raju ◽  
Bhaskar Pramanik ◽  
Tanmoy Kar ◽  
Peddy V. C. Rao ◽  
Nettem V. Choudary ◽  
...  

A molecular gelator which has strong gelation ability for different crude oils (light to heavy crudes), and a wide range of refinery products is reported for the first time for its potential application in oil spillage/recovery.


2001 ◽  
Vol 67 (6) ◽  
pp. 2596-2602 ◽  
Author(s):  
Hassan Hajjaj ◽  
Peter Niederberger ◽  
Philippe Duboc

ABSTRACT Lovastatin is a secondary metabolite produced by Aspergillus terreus. A chemically defined medium was developed in order to investigate the influence of carbon and nitrogen sources on lovastatin biosynthesis. Among several organic and inorganic defined nitrogen sources metabolized by A. terreus, glutamate and histidine gave the highest lovastatin biosynthesis level. For cultures on glucose and glutamate, lovastatin synthesis initiated when glucose consumption levelled off. When A. terreus was grown on lactose, lovastatin production initiated in the presence of residual lactose. Experimental results showed that carbon source starvation is required in addition to relief of glucose repression, while glutamate did not repress biosynthesis. A threefold-higher specific productivity was found with the defined medium on glucose and glutamate, compared to growth on complex medium with glucose, peptonized milk, and yeast extract.


Sign in / Sign up

Export Citation Format

Share Document