Murine cytomegalovirus – Pseudomonas synergistic infections: comparison of virulent and attenuated virus

1987 ◽  
Vol 33 (10) ◽  
pp. 923-927 ◽  
Author(s):  
B. Kournikakis ◽  
L. A. Babiuk

The synergistic interactions between Pseudomonas aeruginosa and virulent or attenuated murine cytomegalovirus (MCMV) were compared in vivo. Virulent MCMV challenge at a dose of 5 × 105 pfu/mouse intraperitioneally, followed by intranasal superinfection with 5 × 106 cfu/mouse of Pseudomonas aeruginosa after 48 h resulted in greater than 80% mortality, apparently owing to a failure of pulmonary clearance mechanisms. Single infections, or the use of attenuated MCMV in synergistic infections, did not result in significant morbidity or mortality. Infection with virulent MCMV in vivo resulted in the rapid spread of virus to the lung, liver, and spleen, followed later by spread to the salivary glands. Attenuated virus was detected in salivary glands only. Virulent MCMV was more effective in adsorbing to, or infecting, spleen cells in vitro than attenuated virus. Viral neutralization experiments using anti-viral serum, rabbit complement, and anti-mouse IgG confirmed the presence of a nonneutralizing antibody on the surface of the virulent virus. Our results suggest that the presence of the nonneutralizing antibody on virulent MCMV allows the virus to preferentially infect, or adsorb to, Fc+ cells in the peritoneum. These cells may then carry the virus, via the lymphatic circulation, to other areas of the body, resulting in the replication of virus in multiple organs. Virus replication in the lung may, in part, be the cause of the observed suppression of pulmonary clearance.

2021 ◽  
Author(s):  
Salimata Bagayoko ◽  
Stephen Leon Icaza ◽  
Miriam Pinilla ◽  
Audrey Hessel ◽  
Karin Santoni ◽  
...  

SummaryRegulated cell necrosis supports immune and anti-infectious strategies of the body; however, dysregulation of these processes drives pathological organ damage. Pseudomonas aeruginosa expresses a phospholipase, ExoU that triggers pathological host cell necrosis through a poorly characterized pathway. Here, we investigated the molecular and cellular mechanisms of ExoU-mediated necrosis. We show that cellular peroxidised phospholipids enhance ExoU phospholipase activity, which drives necrosis of immune and non-immune cells. Conversely, both the endogenous lipid peroxidation regulator GPX4 and the pharmacological inhibition of lipid peroxidation delay ExoU-dependent cell necrosis and improve bacterial elimination in vitro and in vivo. Our findings also pertain to the ExoU-related phospholipase from the bacterial pathogen Burkholderia thailandensis, suggesting that exploitation of peroxidised phospholipids might be a conserved virulence mechanism among various microbial phospholipases. Overall, our results identify an original lipid peroxidation-based virulence mechanism as a strong contributor of microbial phospholipase-driven pathology.


2017 ◽  
Vol 85 (11) ◽  
Author(s):  
Audrey C. Bergeron ◽  
Brittany G. Seman ◽  
John H. Hammond ◽  
Linda S. Archambault ◽  
Deborah A. Hogan ◽  
...  

ABSTRACT Polymicrobial infections often include both fungi and bacteria and can complicate patient treatment and resolution of infection. Cross-kingdom interactions among bacteria, fungi, and/or the immune system during infection can enhance or block virulence mechanisms and influence disease progression. The fungus Candida albicans and the bacterium Pseudomonas aeruginosa are coisolated in the context of polymicrobial infection at a variety of sites throughout the body, including mucosal tissues such as the lung. In vitro, C. albicans and P. aeruginosa have a bidirectional and largely antagonistic relationship. Their interactions in vivo remain poorly understood, specifically regarding host responses in mediating infection. In this study, we examine trikingdom interactions using a transparent juvenile zebrafish to model mucosal lung infection and show that C. albicans and P. aeruginosa are synergistically virulent. We find that high C. albicans burden, fungal epithelial invasion, swimbladder edema, and epithelial extrusion events serve as predictive factors for mortality in our infection model. Longitudinal analyses of fungal, bacterial, and immune dynamics during coinfection suggest that enhanced morbidity is associated with exacerbated C. albicans pathogenesis and elevated inflammation. The P. aeruginosa quorum-sensing-deficient ΔlasR mutant also enhances C. albicans pathogenicity in coinfection and induces extrusion of the swimbladder. Together, these observations suggest that C. albicans-P. aeruginosa cross talk in vivo can benefit both organisms to the detriment of the host.


2000 ◽  
Vol 74 (20) ◽  
pp. 9488-9497 ◽  
Author(s):  
Jianqiao Xiao ◽  
Tuong Tong ◽  
Xiaoyan Zhan ◽  
Erik Haghjoo ◽  
Fenyong Liu

ABSTRACT We have recently generated a pool of murine cytomegalovirus (MCMV) mutants by using a Tn3-based transposon mutagenesis approach. In this study, one of the MCMV mutants, RvM43, which contained the transposon inserted in open reading frame M43, was characterized. Our results provide the first direct evidence to suggest that M43 is not essential for viral replication in vitro in NIH 3T3 cells. Moreover, RvM43 exhibited a titer similar to that of the wild-type virus in the lungs, livers, spleens, and kidneys of both BALB/c and SCID mice and was as virulent as the wild-type virus in killing SCID mice that had been intraperitoneally infected with the viruses. In contrast, titers of the mutant virus in the salivary glands of the infected animals at 21 days postinfection were significantly (100 to 1,000-fold) lower than those of the wild-type virus and a rescued virus that restored the M43 region and its expression. Thus, M43 appears to be not essential for viral growth in vivo in the lungs, livers, spleens, and kidneys of infected animals and is also dispensable for virulence in killing SCID mice. Moreover, our results suggest that M43 is an MCMV determinant for growth in the salivary glands. Studies of viral genes required for replication in the salivary glands are important in understanding the mechanism of viral tropism for the salivary glands and shedding in saliva, which is believed to be one of the major routes of CMV transmission among healthy human populations.


2021 ◽  
Vol 17 (9) ◽  
pp. e1009927
Author(s):  
Salimata Bagayoko ◽  
Stephen Adonai Leon-Icaza ◽  
Miriam Pinilla ◽  
Audrey Hessel ◽  
Karin Santoni ◽  
...  

Regulated cell necrosis supports immune and anti-infectious strategies of the body; however, dysregulation of these processes drives pathological organ damage. Pseudomonas aeruginosa expresses a phospholipase, ExoU that triggers pathological host cell necrosis through a poorly characterized pathway. Here, we investigated the molecular and cellular mechanisms of ExoU-mediated necrosis. We show that cellular peroxidised phospholipids enhance ExoU phospholipase activity, which drives necrosis of immune and non-immune cells. Conversely, both the endogenous lipid peroxidation regulator GPX4 and the pharmacological inhibition of lipid peroxidation delay ExoU-dependent cell necrosis and improve bacterial elimination in vitro and in vivo. Our findings also pertain to the ExoU-related phospholipase from the bacterial pathogen Burkholderia thailandensis, suggesting that exploitation of peroxidised phospholipids might be a conserved virulence mechanism among various microbial phospholipases. Overall, our results identify an original lipid peroxidation-based virulence mechanism as a strong contributor of microbial phospholipase-driven pathology.


2003 ◽  
Vol 77 (14) ◽  
pp. 7746-7755 ◽  
Author(s):  
Ada Tam ◽  
Jiaming Zhu ◽  
Rong Hai ◽  
Erik Haghjoo ◽  
Tuong Tong ◽  
...  

ABSTRACT We had previously constructed a pool of murine cytomegalovirus (MCMV) mutants that contained a Tn3-based transposon sequence randomly inserted in the viral genome. In the study reported here, one of the mutants, RvM35, which contains the transposon insertion at open reading frame M35, was characterized both in vitro in tissue cultures and in immunocompetent Balb/c and immunodeficient SCID mice. Our results provide the first direct evidence to suggest that M35 is not essential for viral replication in vitro in NIH 3T3 cells. Compared to the wild-type strain and a rescued virus that restored the M35 region, the viral mutant was attenuated in growth in both the intraperitoneally infected Balb/c and SCID mice. At 21 days postinfection, the titers of the mutant in the salivary glands, lungs, spleens, livers, and kidneys of the SCID mice were lower than the titers of the wild-type Smith strain and the rescued virus by 50,000-, 100-, 10-, 100-, and 50-fold, respectively. Moreover, the growth of RvM35 is severely attenuated in the salivary glands. The virulence of the mutant virus also appears to be attenuated, because no death was observed in SCID mice infected with RvM35 until 35 days postinfection, while all the animals infected with the wild-type and rescued viruses died 27 days postinfection. Our results suggest that M35 is important for MCMV virulence in killing SCID mice and is required for optimal viral growth in vivo, including in the salivary glands.


2012 ◽  
Vol 82 (3) ◽  
pp. 228-232 ◽  
Author(s):  
Mauro Serafini ◽  
Giuseppa Morabito

Dietary polyphenols have been shown to scavenge free radicals, modulating cellular redox transcription factors in different in vitro and ex vivo models. Dietary intervention studies have shown that consumption of plant foods modulates plasma Non-Enzymatic Antioxidant Capacity (NEAC), a biomarker of the endogenous antioxidant network, in human subjects. However, the identification of the molecules responsible for this effect are yet to be obtained and evidences of an antioxidant in vivo action of polyphenols are conflicting. There is a clear discrepancy between polyphenols (PP) concentration in body fluids and the extent of increase of plasma NEAC. The low degree of absorption and the extensive metabolism of PP within the body have raised questions about their contribution to the endogenous antioxidant network. This work will discuss the role of polyphenols from galenic preparation, food extracts, and selected dietary sources as modulators of plasma NEAC in humans.


Author(s):  
А.А. Раецкая ◽  
С.В. Калиш ◽  
С.В. Лямина ◽  
Е.В. Малышева ◽  
О.П. Буданова ◽  
...  

Цель исследования. Доказательство гипотезы, что репрограммированные in vitro на М3 фенотип макрофаги при введении в организм будут существенно ограничивать развитие солидной карциномы in vivo . Методика. Рост солидной опухоли инициировали у мышей in vivo путем подкожной инъекции клеток карциномы Эрлиха (КЭ). Инъекцию макрофагов с нативным М0 фенотипом и с репрограммированным M3 фенотипом проводили в область формирования солидной КЭ. Репрограммирование проводили с помощью низких доз сыворотки, блокаторов факторов транскрипции STAT3/6 и SMAD3 и липополисахарида. Использовали две схемы введения макрофагов: раннее и позднее. При раннем введении макрофаги вводили на 1-е, 5-е, 10-е и 15-е сут. после инъекции клеток КЭ путем обкалывания макрофагами с четырех сторон область развития опухоли. При позднем введении, макрофаги вводили на 10-е, 15-е, 20-е и 25-е сут. Через 15 и 30 сут. после введения клеток КЭ солидную опухоль иссекали и измеряли ее объем. Эффект введения макрофагов оценивали качественно по визуальной и пальпаторной характеристикам солидной опухоли и количественно по изменению ее объема по сравнению с группой без введения макрофагов (контроль). Результаты. Установлено, что M3 макрофаги при раннем введении от начала развития опухоли оказывают выраженный антиопухолевый эффект in vivo , который был существенно более выражен, чем при позднем введении макрофагов. Заключение. Установлено, что введение репрограммированных макрофагов M3 ограничивает развитие солидной карциномы в экспериментах in vivo . Противоопухолевый эффект более выражен при раннем введении М3 макрофагов. Обнаруженные в работе факты делают перспективным разработку клинической версии биотехнологии ограничения роста опухоли, путем предварительного программирования антиопухолевого врожденного иммунного ответа «в пробирке». Aim. To verify a hypothesis that macrophages reprogrammed in vitro to the M3 phenotype and injected into the body substantially restrict the development of solid carcinoma in vivo . Methods. Growth of a solid tumor was initiated in mice in vivo with a subcutaneous injection of Ehrlich carcinoma (EC) cells. Macrophages with a native M0 phenotype or reprogrammed towards the M3 phenotype were injected into the region of developing solid EC. Reprogramming was performed using low doses of serum, STAT3/6 and SMAD3 transcription factor blockers, and lipopolysaccharide. Two schemes of macrophage administration were used: early and late. With the early administration, macrophages were injected on days 1, 5, 10, and 15 following the injection of EC cells at four sides of the tumor development area. With the late administration, macrophages were injected on days 10, 15, 20, and 25. At 15 and 30 days after the EC cell injection, the solid tumor was excised and its volume was measured. The effect of macrophage administration was assessed both qualitatively by visual and palpation characteristics of solid tumor and quantitatively by changes in the tumor volume compared with the group without the macrophage treatment. Results. M3 macrophages administered early after the onset of tumor development exerted a pronounced antitumor effect in vivo , which was significantly greater than the antitumor effect of the late administration of M3 macrophages. Conclusion. The observed significant inhibition of in vivo growth of solid carcinoma by M3 macrophages makes promising the development of a clinical version of the biotechnology for restriction of tumor growth by in vitro pre-programming of the antitumor, innate immune response.


2020 ◽  
Vol 26 (45) ◽  
pp. 5783-5792
Author(s):  
Kholood Abid Janjua ◽  
Adeeb Shehzad ◽  
Raheem Shahzad ◽  
Salman Ul Islam ◽  
Mazhar Ul Islam

There is compelling evidence that drug molecules isolated from natural sources are hindered by low systemic bioavailability, poor absorption, and rapid elimination from the human body. Novel approaches are urgently needed that could enhance the retention time as well as the efficacy of natural products in the body. Among the various adopted approaches to meet this ever-increasing demand, nanoformulations show the most fascinating way of improving the bioavailability of dietary phytochemicals through modifying their pharmacokinetics and pharmacodynamics. Curcumin, a yellowish pigment isolated from dried ground rhizomes of turmeric, exhibits tremendous pharmacological effects, including anticancer activities. Several in vitro and in vivo studies have shown that curcumin mediates anticancer effects through the modulation (upregulation and/or downregulations) of several intracellular signaling pathways both at protein and mRNA levels. Scientists have introduced multiple modern techniques and novel dosage forms for enhancing the delivery, bioavailability, and efficacy of curcumin in the treatment of various malignancies. These novel dosage forms include nanoparticles, liposomes, micelles, phospholipids, and curcumin-encapsulated polymer nanoparticles. Nanocurcumin has shown improved anticancer effects compared to conventional curcumin formulations. This review discusses the underlying molecular mechanism of various nanoformulations of curcumin for the treatment of different cancers. We hope that this study will make a road map for preclinical and clinical investigations of cancer and recommend nano curcumin as a drug of choice for cancer therapy.


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 315
Author(s):  
Zhenxing Wang ◽  
Zongcai Tu ◽  
Xing Xie ◽  
Hao Cui ◽  
Kin Weng Kong ◽  
...  

This study aims to evaluate the bioactive components, in vitro bioactivities, and in vivo hypoglycemic effect of P. frutescens leaf, which is a traditional medicine-food homology plant. P. frutescens methanol crude extract and its fractions (petroleum ether, chloroform, ethyl acetate, n-butanol fractions, and aqueous phase residue) were prepared by ultrasound-enzyme assisted extraction and liquid–liquid extraction. Among the samples, the ethyl acetate fraction possessed the high total phenolic (440.48 μg GAE/mg DE) and flavonoid content (455.22 μg RE/mg DE), the best antioxidant activity (the DPPH radical, ABTS radical, and superoxide anion scavenging activity, and ferric reducing antioxidant power were 1.71, 1.14, 2.40, 1.29, and 2.4 times higher than that of control Vc, respectively), the most powerful α-glucosidase inhibitory ability with the IC50 value of 190.03 μg/mL which was 2.2-folds higher than control acarbose, the strongest proliferative inhibitory ability against MCF-7 and HepG2 cell with the IC50 values of 37.92 and 13.43 μg/mL, which were considerable with control cisplatin, as well as certain inhibition abilities on acetylcholinesterase and tyrosinase. HPLC analysis showed that the luteolin, rosmarinic acid, rutin, and catechin were the dominant components of the ethyl acetate fraction. Animal experiments further demonstrated that the ethyl acetate fraction could significantly decrease the serum glucose level, food, and water intake of streptozotocin-induced diabetic SD rats, increase the body weight, modulate their serum levels of TC, TG, HDL-C, and LDL-C, improve the histopathology and glycogen accumulation in liver and intestinal tissue. Taken together, P. frutescens leaf exhibits excellent hypoglycemic activity in vitro and in vivo, and could be exploited as a source of natural antidiabetic agent.


2021 ◽  
Vol 8 (3) ◽  
pp. 39
Author(s):  
Britani N. Blackstone ◽  
Summer C. Gallentine ◽  
Heather M. Powell

Collagen is a key component of the extracellular matrix (ECM) in organs and tissues throughout the body and is used for many tissue engineering applications. Electrospinning of collagen can produce scaffolds in a wide variety of shapes, fiber diameters and porosities to match that of the native ECM. This systematic review aims to pool data from available manuscripts on electrospun collagen and tissue engineering to provide insight into the connection between source material, solvent, crosslinking method and functional outcomes. D-banding was most often observed in electrospun collagen formed using collagen type I isolated from calfskin, often isolated within the laboratory, with short solution solubilization times. All physical and chemical methods of crosslinking utilized imparted resistance to degradation and increased strength. Cytotoxicity was observed at high concentrations of crosslinking agents and when abbreviated rinsing protocols were utilized. Collagen and collagen-based scaffolds were capable of forming engineered tissues in vitro and in vivo with high similarity to the native structures.


Sign in / Sign up

Export Citation Format

Share Document