RING fingers and B-boxes: zinc-binding protein-protein interaction domains

1998 ◽  
Vol 76 (2-3) ◽  
pp. 351-358 ◽  
Author(s):  
Katherine LB Borden

The cysteine-rich zinc-binding motifs known as the RING and B-box are found in several unrelated proteins. Structural, biochemical, and biological studies of these motifs reveal that they mediate protein-protein interactions. Several RING-containing proteins are oncoproteins and recent data indicate that proapoptotic activities can be mediated through the RING. 1H NMR methods were used to determine the structures of RINGs and a B-box domain and to monitor the conformational changes these motifs undergo upon zinc ligation. This review discusses in detail the structural features of the RING and B-box domains. Further, possible structure function relationships for these motifs particularly in their role as protein interaction domains are discussed.Key words: RING, B-box, PML, NMR.

2020 ◽  
Vol 27 (37) ◽  
pp. 6306-6355 ◽  
Author(s):  
Marian Vincenzi ◽  
Flavia Anna Mercurio ◽  
Marilisa Leone

Background:: Many pathways regarding healthy cells and/or linked to diseases onset and progression depend on large assemblies including multi-protein complexes. Protein-protein interactions may occur through a vast array of modules known as protein interaction domains (PIDs). Objective:: This review concerns with PIDs recognizing post-translationally modified peptide sequences and intends to provide the scientific community with state of art knowledge on their 3D structures, binding topologies and potential applications in the drug discovery field. Method:: Several databases, such as the Pfam (Protein family), the SMART (Simple Modular Architecture Research Tool) and the PDB (Protein Data Bank), were searched to look for different domain families and gain structural information on protein complexes in which particular PIDs are involved. Recent literature on PIDs and related drug discovery campaigns was retrieved through Pubmed and analyzed. Results and Conclusion:: PIDs are rather versatile as concerning their binding preferences. Many of them recognize specifically only determined amino acid stretches with post-translational modifications, a few others are able to interact with several post-translationally modified sequences or with unmodified ones. Many PIDs can be linked to different diseases including cancer. The tremendous amount of available structural data led to the structure-based design of several molecules targeting protein-protein interactions mediated by PIDs, including peptides, peptidomimetics and small compounds. More studies are needed to fully role out, among different families, PIDs that can be considered reliable therapeutic targets, however, attacking PIDs rather than catalytic domains of a particular protein may represent a route to obtain selective inhibitors.


2020 ◽  
Vol 11 (4) ◽  
pp. 7539-7548
Author(s):  
Christina Nilofer ◽  
Arumugam Mohanapriya

Two or more proteins interact in vivo to perform complex molecular functions including catalysis, regulation, assembly, immunity and inhibition through the formation of stable interfaces. This interaction is governed by several factors that are selective, sensitive and specific in nature. Several interface features has been documented since 1975. The study of these interface features of proteins and their dynamicity during interaction with different proteins help understanding the mechanisms underlying diverse molecular functions and its biological processes. Computational tools greatly assist in studying such interface features that determine the interaction between two or more proteins, and in this context, this review enumerates the different interface features reported thus far along with the tools that aid in deciphering protein features (physicochemical characteristics, binding site and interface residue prediction and hotspot residues) along with their approaches that are employed in the prediction these features. Also, the review discusses the advantages and limitations of experimental techniques and computational biological tools deployed for deciphering the protein-protein interactions. Altogether, the review will provide insights into the optimal tools and different strategies involved in protein interaction studies that would facilitate the researchers to understand the protein structural features and molecular principles of protein-protein interaction with known functions.


2016 ◽  
Author(s):  
Claudio Mirabello ◽  
Björn Wallner

AbstractProtein-protein interactions (PPI) are crucial for protein function. There exist many techniques to identify PPIs experimentally, but to determine the interactions in molecular detail is still difficult and very time-consuming. The fact that the number of PPIs is vastly larger than the number of individual proteins makes it practically impossible to characterize all interactions experimentally. Computational approaches that can bridge this gap and predict PPIs and model the interactions in molecular detail are greatly needed. Here we present InterPred, a fully automated pipeline that predicts and model PPIs from sequence using structural modelling combined with massive structural comparisons and molecular docking. A key component of the method is the use of a novel random forest classifier that integrate several structural features to distinguish correct from incorrect protein-protein interaction models. We show that InterPred represents a major improvement in protein-protein interaction detection with a performance comparable or better than experimental high-throughput techniques. We also show that our full-atom protein-protein complex modelling pipeline performs better than state of the art protein docking methods on a standard benchmark set. In addition, InterPred was also one of the top predictors in the latest CAPRI37 experiment.InterPred source code can be downloaded from http://wallnerlab.org/InterPred


Author(s):  
Yu-Miao Zhang ◽  
Jun Wang ◽  
Tao Wu

In this study, the Agrobacterium infection medium, infection duration, detergent, and cell density were optimized. The sorghum-based infection medium (SbIM), 10-20 min infection time, addition of 0.01% Silwet L-77, and Agrobacterium optical density at 600 nm (OD600), improved the competence of onion epidermal cells to support Agrobacterium infection at >90% efficiency. Cyclin-dependent kinase D-2 (CDKD-2) and cytochrome c-type biogenesis protein (CYCH), protein-protein interactions were localized. The optimized procedure is a quick and efficient system for examining protein subcellular localization and protein-protein interaction.


2021 ◽  
Vol 11 (5) ◽  
pp. 578
Author(s):  
Oge Gozutok ◽  
Benjamin Ryan Helmold ◽  
P. Hande Ozdinler

Hereditary spastic paraplegia (HSP) and primary lateral sclerosis (PLS) are rare motor neuron diseases, which affect mostly the upper motor neurons (UMNs) in patients. The UMNs display early vulnerability and progressive degeneration, while other cortical neurons mostly remain functional. Identification of numerous mutations either directly linked or associated with HSP and PLS begins to reveal the genetic component of UMN diseases. Since each of these mutations are identified on genes that code for a protein, and because cellular functions mostly depend on protein-protein interactions, we hypothesized that the mutations detected in patients and the alterations in protein interaction domains would hold the key to unravel the underlying causes of their vulnerability. In an effort to bring a mechanistic insight, we utilized computational analyses to identify interaction partners of proteins and developed the protein-protein interaction landscape with respect to HSP and PLS. Protein-protein interaction domains, upstream regulators and canonical pathways begin to highlight key cellular events. Here we report that proteins involved in maintaining lipid homeostasis and cytoarchitectural dynamics and their interactions are of great importance for UMN health and stability. Their perturbation may result in neuronal vulnerability, and thus maintaining their balance could offer therapeutic interventions.


2021 ◽  
Author(s):  
Laia Miret Casals ◽  
Willem Vannecke ◽  
Kurt Hoogewijs ◽  
Gianluca Arauz ◽  
Marina Gay ◽  
...  

We describe furan as a triggerable ‘warhead’ for site-specific cross-linking using the actin and thymosin β4 (Tβ4)-complex as model of a weak and dynamic protein-protein interaction with known 3D structure...


2019 ◽  
Vol 13 (S1) ◽  
Author(s):  
Qingqing Li ◽  
Zhihao Yang ◽  
Zhehuan Zhao ◽  
Ling Luo ◽  
Zhiheng Li ◽  
...  

Abstract Background Protein–protein interaction (PPI) information extraction from biomedical literature helps unveil the molecular mechanisms of biological processes. Especially, the PPIs associated with human malignant neoplasms can unveil the biology behind these neoplasms. However, such PPI database is not currently available. Results In this work, a database of protein–protein interactions associated with 171 kinds of human malignant neoplasms named HMNPPID is constructed. In addition, a visualization program, named VisualPPI, is provided to facilitate the analysis of the PPI network for a specific neoplasm. Conclusions HMNPPID can hopefully become an important resource for the research on PPIs of human malignant neoplasms since it provides readily available data for healthcare professionals. Thus, they do not need to dig into a large amount of biomedical literatures any more, which may accelerate the researches on the PPIs of malignant neoplasms.


2017 ◽  
Vol 114 (40) ◽  
pp. E8333-E8342 ◽  
Author(s):  
Maximilian G. Plach ◽  
Florian Semmelmann ◽  
Florian Busch ◽  
Markus Busch ◽  
Leonhard Heizinger ◽  
...  

Cells contain a multitude of protein complexes whose subunits interact with high specificity. However, the number of different protein folds and interface geometries found in nature is limited. This raises the question of how protein–protein interaction specificity is achieved on the structural level and how the formation of nonphysiological complexes is avoided. Here, we describe structural elements called interface add-ons that fulfill this function and elucidate their role for the diversification of protein–protein interactions during evolution. We identified interface add-ons in 10% of a representative set of bacterial, heteromeric protein complexes. The importance of interface add-ons for protein–protein interaction specificity is demonstrated by an exemplary experimental characterization of over 30 cognate and hybrid glutamine amidotransferase complexes in combination with comprehensive genetic profiling and protein design. Moreover, growth experiments showed that the lack of interface add-ons can lead to physiologically harmful cross-talk between essential biosynthetic pathways. In sum, our complementary in silico, in vitro, and in vivo analysis argues that interface add-ons are a practical and widespread evolutionary strategy to prevent the formation of nonphysiological complexes by specializing protein–protein interactions.


2019 ◽  
Author(s):  
Akhilesh Kumar Bajpai ◽  
Sravanthi Davuluri ◽  
Kriti Tiwary ◽  
Sithalechumi Narayanan ◽  
Sailaja Oguru ◽  
...  

AbstractProtein-protein interactions (PPIs) are critical, and so are the databases and tools (resources) concerning PPIs. But in absence of systematic comparisons, biologists/bioinformaticians may be forced to make a subjective selection among such protein interaction databases and tools. In fact, a comprehensive list of such bioinformatics resources has not been reported so far. For the first time, we compiled 375 PPI resources, short-listed and performed preliminary comparison of 125 important ones (both lists available publicly at startbioinfo.com), and then systematically compared human PPIs from 16 carefully-selected databases. General features have been first compared in detail. The coverage of ‘experimentally verified’ vs. all PPIs, as well as those significant in case of disease-associated and other types of genes among the chosen databases has been compared quantitatively. This has been done in two ways: outputs manually obtained using web-interfaces, and all interactions downloaded from the databases. For the first approach, PPIs obtained in response to gene queries using the web interfaces were compared. As a query set, 108 genes associated with different tissues (specific to kidney, testis, and uterus, and ubiquitous) or diseases (breast cancer, lung cancer, Alzheimer’s, cystic fibrosis, diabetes, and cardiomyopathy) were chosen. PPI-coverage for well-studied genes was also compared with that of less-studied ones. For the second approach, the back-end-data from the databases was downloaded and compared. Based on the results, we recommend the use of STRING and UniHI for retrieving the majority of ‘experimentally verified’ protein interactions, and hPRINT and STRING for obtaining maximum number of ‘total’ (experimentally verified as well as predicted) PPIs. The analysis of experimentally verified PPIs found exclusively in each database revealed that STRING contributed about 71% of exclusive hits. Overall, hPRINT, STRING and IID together retrieved ~94% of ‘total’ protein interactions available in the databases. The coverage of certain databases was skewed for some gene-types. The results also indicate that the database usage frequency may not correlate with their advantages, thereby justifying the need for more frequent studies of this nature.


2019 ◽  
Author(s):  
Franziska Seeger ◽  
Anna Little ◽  
Yang Chen ◽  
Tina Woolf ◽  
Haiyan Cheng ◽  
...  

AbstractProtein-protein interactions regulate many essential biological processes and play an important role in health and disease. The process of experimentally charac-terizing protein residues that contribute the most to protein-protein interaction affin-ity and specificity is laborious. Thus, developing models that accurately characterize hotspots at protein-protein interfaces provides important information about how to inhibit therapeutically relevant protein-protein interactions. During the course of the ICERM WiSDM workshop 2017, we combined the KFC2a protein-protein interaction hotspot prediction features with Rosetta scoring function terms and interface filter metrics. A 2-way and 3-way forward selection strategy was employed to train support vector machine classifiers, as was a reverse feature elimination strategy. From these results, we identified subsets of KFC2a and Rosetta combined features that show improved performance over KFC2a features alone.


Sign in / Sign up

Export Citation Format

Share Document