(1+1)-dimensional m-cKdV, g-cKdV integrable systems, and (2+1)-dimensional m-cKdV hierarchy

2008 ◽  
Vol 86 (12) ◽  
pp. 1367-1380 ◽  
Author(s):  
Y Zhang ◽  
H Tam

A few isospectral problems are introduced by referring to that of the cKdV equation hierarchy, for which two types of integrable systems called the (1 + 1)-dimensional m-cKdV hierarchy and the g-cKdV hierarchy are generated, respectively, whose Hamiltonian structures are also discussed by employing a linear functional and the quadratic-form identity. The corresponding expanding integrable models of the (1 + 1)-dimensional m-cKdV hierarchy and g-cKdV hierarchy are obtained. The Hamiltonian structure of the latter one is given by the variational identity, proposed by Ma Wen-Xiu as well. Finally, we use a Lax pair from the self-dual Yang–Mills equations to deduce a higher dimensional m-cKdV hierarchy of evolution equations and its Hamiltonian structure. Furthermore, its expanding integrable model is produced by the use of a enlarged Lie algebra.PACS Nos.: 02.30, 03.40.K

2015 ◽  
Vol 5 (3) ◽  
pp. 256-272 ◽  
Author(s):  
Huanhe Dong ◽  
Kun Zhao ◽  
Hongwei Yang ◽  
Yuqing Li

AbstractMuch attention has been given to constructing Lie and Lie superalgebra for integrable systems in soliton theory, which often have significant scientific applications. However, this has mostly been confined to (1+1)-dimensional integrable systems, and there has been very little work on (2+1)-dimensional integrable systems. In this article, we construct a class of generalised Lie superalgebra that differs from more common Lie superalgebra to generate a (2+1)-dimensional super modified Korteweg-de Vries (mKdV) hierarchy, via a generalised Tu scheme based on the Lax pair method where the Hamiltonian structure derives from a generalised supertrace identity. We also obtain some solutions of the (2+1)-dimensional mKdV equation using the G′/G2 method.


2010 ◽  
Vol 24 (14) ◽  
pp. 1573-1594 ◽  
Author(s):  
YUFENG ZHANG ◽  
HONWAH TAM ◽  
JIANQIN MEI

Using a 4-dimensional Lie algebra g, an isospectral Lax pair is introduced, whose compatibility condition is equivalent to a soliton hierarchy of evolution equations with three components of potential functions. Its Hamiltonian structure is obtained by employing the quadratic-form identity proposed by Guo and Zhang. In order to obtain explicit Hamiltonian functions, a detailed computing formula for the constant appearing in the quadratic-form identity is obtained. One type of reduction equations of the hierarchy is also produced, which is further reduced to the standard equation of heat conduction. By introducing a loop algebra of the Lie algebra g, we obtain a soliton hierarchy with an arbitrary parameter which can be reduced to the previous equation hierarchy obtained, whose quasi-Hamiltonian structure is also worked out by the quadratic-form identity. Finally, we extend the Lie algebra g into a higher-dimensional Lie algebra so that a new integrable Hamiltonian hierarchy, which comprise integrable couplings, is produced; its reduced equations in particular contain two arbitrary parameters.


2003 ◽  
Vol 18 (26) ◽  
pp. 4889-4931 ◽  
Author(s):  
MATTHIAS IHL ◽  
SEBASTIAN UHLMANN

The Seiberg–Witten limit of fermionic N = 2 string theory with nonvanishing B-field is governed by noncommutative self-dual Yang–Mills theory (ncSDYM) in 2+2 dimensions. Conversely, the self-duality equations are contained in the equation of motion of N = 2 string field theory in a B-field background. Therefore finding solutions to noncommutative self-dual Yang–Mills theory on ℝ2,2 might help to improve our understanding of nonperturbative properties of string (field) theory. In this paper, we construct nonlinear soliton-like and multi-plane wave solutions of the ncSDYM equations corresponding to certain D-brane configurations by employing a solution generating technique, an extension of the so-called dressing approach. The underlying Lax pair is discussed in two different gauges, the unitary and the Hermitian gauge. Several examples and applications for both situations are considered, including Abelian solutions constructed from GMS-like projectors, noncommutative U(2) soliton-like configurations and interacting plane waves. We display a correspondence to earlier work on string field theory and argue that the solutions found here can serve as a guideline in the search for nonperturbative solutions of nonpolynomial string field theory.


2007 ◽  
Vol 21 (30) ◽  
pp. 2063-2074 ◽  
Author(s):  
YUFENG ZHANG ◽  
Y. C. HON

The extension of a three-dimensional Lie algebra into two higher-dimensional ones is used to deduce two new integrable couplings of the m-AKNS hierarchy. The Hamiltonian structures of the two integrable couplings are obtained, respectively. Specially, the complex Hamiltonian structure of the second integrable couplings is given.


2016 ◽  
Vol 71 (7) ◽  
pp. 631-638 ◽  
Author(s):  
Yufeng Zhang ◽  
Yan Wang

AbstractThrough imposing on space–time symmetries, a new reduction of the self-dual Yang–Mills equations is obtained for which a Lax pair is established. By a proper exponent transformation, we transform the Lax pair to get a new Lax pair whose compatibility condition gives rise to a set of partial differential equations (PDEs). We solve such PDEs by taking different Lax matrices; we develop a new modified Burgers equation, a generalised type of Kadomtsev–Petviasgvili equation, and the Davey–Stewartson equation, which also generalise some results given by Ablowitz, Chakravarty, Kent, and Newman.


2009 ◽  
Vol 23 (27) ◽  
pp. 3253-3264 ◽  
Author(s):  
QIU-LAN ZHAO ◽  
XIN-YUE LI ◽  
BAI-YING HE

The super extensions of g-cKdV and mKdV integrable systems are proposed. Two hierarchies of super-integrable nonlinear evolution equations are found. In addition, making use of the super-trace identity, we construct the super-Hamiltonian structures of zero-curvature equations associated with Lie superalgebras.


Sign in / Sign up

Export Citation Format

Share Document