CRYSTAL STRUCTURE OF ZIRCONIUM TRICHLORIDE

1964 ◽  
Vol 42 (10) ◽  
pp. 1886-1889 ◽  
Author(s):  
B. Swaroop ◽  
S. N. Flengas

The crystal structure of zirconium trichloride was determined from X-ray diffraction patterns. Zirconium trichloride belongs to the [Formula: see text]space group. The dimensions of the main cell at room temperature are: a = 5.961 ± 0.005 Å and c = 9.669 ± 0.005 Å.The density of zirconium trichloride was measured and gave the value of 2.281 ± 0.075 g/cm3 while, from the X-ray calculations, the value was found to be 2.205 g/cm3.

1995 ◽  
Vol 50 (3) ◽  
pp. 439-447 ◽  
Author(s):  
Roland Köster ◽  
Günter Seidel ◽  
Roland Boese ◽  
Bernd Wrackmeyer

The exhaustive hydroboration of the (C ≡ C )-groups in Me2Si(C ≡ CMe)2 (A ) by adding ethyldiboranes(6) at room temperature is presumed to lead initially to the formation of a mixture of the threo- and erythro-3,3,5,6-tetrakis(diethylboryl)-4,4-dimethyl-4-silaheptanes (1a , b). The threo-1a reacts further by borane catalysed intermolecular condensation to the substituted disilatetraboratricyclo[6.2.1.16.9]dodecane 2 with the formula , whose crystal structure [space group C2/c, a = 19.696(2), b = 10.371(1), c = 16.580(2) Å; β = 125.90(1)°; at 122 K] has been established by X -ray diffraction. In contrast, the erythro-1b undergoes intramolecular, thermal elimination of Et3B to give the 1,2-diethyl-2,4-bis(diethylboryl)- 3,3,5-trim ethyl-3-silaborolane (4). If A is added to an excess of undiluted B (“hydridebath”), then the two substituted diastereomers of the 1-carba-arachno-pentaboranes(10) (endo/exo-Et,SiH Me2) (3a, b), are formed preferentially as the result of an initial Si-C ≡-c le a v e d hydroboration.


1997 ◽  
Vol 12 (3) ◽  
pp. 134-135
Author(s):  
Liangqin Nong ◽  
Lingmin Zeng ◽  
Jianmin Hao

The compound DyNiSn has been studied by X-ray powder diffraction. The X-ray diffraction patterns for this compound at room temperature are reported. DyNiSn is orthorhombic with lattice parameters a=7.1018(1) Å, b=7.6599(2) Å, c=4.4461(2) Å, space group Pna21 and 4 formula units of DyNiSn in unit cell. The Smith and Snyder Figure-of-Merit F30 for this powder pattern is 26.7(0.0178,63).


1993 ◽  
Vol 8 (4) ◽  
pp. 240-244 ◽  
Author(s):  
K. D. Rogers

Powder diffraction data for semiconductor and metallic states of vanadium dioxide are presented. The structures are refined by Rietveld methods using a monoclinic cell (a = 5.7529Å, b = 4.5263Å, c = 5.3825Å, β = 122.61°) and space group P21/c for the room temperature data, and a tetragonal cell (a =4.5540Å, c = 2.8557Å) and space group P42/mnm for data collected at 400 K. The similarity between the corresponding X-ray diffraction patterns is discussed. The transition process from the monoclinic to tetragonal phase is investigated and initial evidence for the coexistence of phases over a small temperature range is presented.


2019 ◽  
Vol 234 (11-12) ◽  
pp. 769-785 ◽  
Author(s):  
Peter Paufler

AbstractThe English crystallographer William Barlow is famous for two achievements, both published in German, in Zeitschrift für Krystallographie und Mineralogie between 1894 and 1901. They concern the derivation of all possible symmetrical arrangements of points in space and the idea to represent crystal structures by replacing points by spheres. His results had an impact upon crystal structure modelling and describing crystal morphology. Utilizing self-made models, he found the 230 space group types of symmetry obtained earlier by both E. S. Fedorow and A. Schoenflies in a different manner. The structures he proposed before the discovery of X-ray diffraction served in some cases as starting point for the interpretation of diffraction patterns thereafter.


2004 ◽  
Vol 19 (4) ◽  
pp. 378-384
Author(s):  
A. Rafalska-Lasocha ◽  
M. Grzywa ◽  
B. Włodarczyk-Gajda ◽  
W. Lasocha

The X-ray diffraction patterns of two organic acids 1-naphthalenesulfonic acid dihydrate and 2-naphthalenesulfonic acid hydrate were measured at room temperature. Complexes of these acids with 1,8-bis(dimethylamino)naphthalene (DMAN) were synthesized, purified and investigated by means of X-ray powder diffraction. 1-Naphthalenesulfonic acid dihydrate as well as its complex with 1,8-bis(dimethylamino)naphthalene crystallize in the monoclinic system with unit cell parameters refined to a=0.91531(8) nm, b=0.7919(1) nm, c=0.8184(1) nm, β=101.618(9)° space group P21/m (11) and a=1.7781(4) nm, b=2.0122(4) nm, c=1.2337(2) nm, β=96.54(3)°, space group C2/m (12), respectively. 2-Naphthalenesulfonic acid hydrate crystallizes in the orthorhombic system with a=2.2749(3) nm, b=0.7745(1) nm, c=0.591 36(9) nm, space group Pnma, whereas its complex with 1,8-bis(dimethylamino)naphthalene crystallizes in the triclinic system a=1.3969(6) nm, b=1.4292(5) nm, c=1.1741(6) nm, α=90.93(3)°, β=98.14(3)°, γ=113.93(3)°, space group P-1 (2).


2021 ◽  
Vol 54 (2) ◽  
Author(s):  
Drew R. Onken ◽  
Didier Perrodin ◽  
Edith D. Bourret ◽  
Sven C. Vogel

Tl2LiYCl6 (TLYC) is an analog to Cs2LiYCl6, which is currently an industry-standard inorganic scintillator for radiation detection with good gamma–neutron discrimination. The presence of thallium (Z = 81) instead of cesium (Z = 55) in the elpasolite structure increases the density of the compound and its stopping power for gamma rays. This work investigates the impact of the Tl atom on the elpasolite structure. Single-crystal X-ray diffraction at room temperature and powder neutron diffraction with temperature control were used to characterize the crystal structure of TLYC between 296 and 725 K. The presence of Tl leads to a distortion of the cubic elpasolite structure at room temperature: a tetragonal P42 crystal structure (space group 77, a = 10.223, c = 10.338 Å) is identified for TLYC at 296 K. A structural transition to the cubic elpasolite Fm 3 m phase (space group 225) is observed at 464 K. The thermal expansion of the material for each crystal direction is well described by a linear relationship, except for the region between 400 and 464 K where the lattice parameters converge.


RSC Advances ◽  
2019 ◽  
Vol 9 (44) ◽  
pp. 25358-25367 ◽  
Author(s):  
Hanen Ghoudi ◽  
Souad Chkoundali ◽  
Zeineb Raddaoui ◽  
Abdelhedi Aydi

In this paper, the synthesis of Ca0.1Na0.9Ti0.1Nb0.9O3 (CNTN) ceramic by a solid-state reaction is reported. The results of Rietveld refinement of X-ray diffraction patterns at room temperature showed a pure tetragonal perovskite (P4mm space group).


2020 ◽  
Vol 75 (1-2) ◽  
pp. 111-116
Author(s):  
H. Lars Deubner ◽  
Florian Kraus

AbstractThe reaction of uranium tetrabromide with potassium cyanide in anhydrous liquid ammonia at room temperature leads to the formation of brown crystals of [U2(CN)3(NH3)14]5+ [KBr6]5− · NH3. We determined the crystal structure of the compound by single crystal X-ray diffraction. To the best of our knowledge it contains the unprecedented spatially separated [KBr6]5− anion and presents the first uranium(IV) cyanide compound which forms a layer structure. The compound crystallizes in the trigonal space group P3̅m1 (No. 164) with a = 10.3246(13), c = 8.4255(17) Å, V = 777.8(3) Å3, Z = 1 at T = 100 K and is well described with the Niggli formula $\mathop {} \limits_{\infty}^{2}{\left[ {{\rm{U}}{{({\rm{CN}})}_{{3 \over 2}}}{{({\rm{N}}{{\rm{H}}_3})}_{{7 \over 1}}}} \right]_2}\left[ {{\rm{KB}}{{\rm{r}}_{{6 \over 1}}}} \right].$


Author(s):  
Chad M. Bernier ◽  
Christine M. DuChane ◽  
Joseph S. Merola

The title complexes, (η4-cycloocta-1,5-diene)bis(1,3-dimethylimidazol-2-ylidene)iridium(I) iodide, [Ir(C5H8N2)2(C8H12)]I, (1) and (η4-cycloocta-1,5-diene)bis(1,3-diethylimidazol-2-ylidene)iridium(I) iodide, [Ir(C7H12N2)2(C8H12)]I, (2), were prepared using a modified literature method. After carrying out the oxidative addition of the amino acid L-proline to [Ir(COD)(IMe)2]I in water and slowly cooling the reaction to room temperature, a suitable crystal of 1 was obtained and analyzed by single-crystal X-ray diffraction at 100 K. Although this crystal structure has previously been reported in the Pbam space group, it was highly disordered and precise atomic coordinates were not calculated. A single crystal of 2 was also obtained by heating the complex in water and letting it slowly cool to room temperature. Complex 1 was found to crystallize in the monoclinic space group C2/m, while 2 crystallizes in the orthorhombic space group Pccn, both with Z = 4.


1998 ◽  
Vol 53 (11) ◽  
pp. 1323-1325 ◽  
Author(s):  
Grzegorz Dutkiewicz ◽  
Zdzisław Pająk

The crystal structure of the room-temperature ferroelectric phase of pyridinium periodate [C6H5NH]+[IO4]- has been determined by X-ray diffraction as orthorhombic, space group Cmc2i with a = 8.347(2), b = 7.270(2), c = 12.732(3) Å and Z = 4. It was refined to R1 =0.0281 wR2 = 0.0762 for 389 absorption-corrected reflections. The structure comprises isolated IO4 tetrahedra linked together by disordered pyridinium cations involved in a network of bifurcated hydrogen bonds. The average I-O distance is found to be 1.75(1) Å.


Sign in / Sign up

Export Citation Format

Share Document