Resistivity and Thermopower of a Series of Ni–Fe Invar Alloys

1972 ◽  
Vol 50 (3) ◽  
pp. 244-250 ◽  
Author(s):  
Barry E. Armstrong ◽  
Robin Fletcher

The resistivity and absolute thermopower of a series of commercial f.c.c. Ni–Fe alloys containing 36–51 at. % Ni plus a comparison alloy of 75 at. % Ni have been measured over the range 1.5–125 K. Both the residual and the temperature dependent resistivities show a dramatic increase as the Ni concentration is reduced. By combining the present thermopower results with those at high temperatures by Kolomoets and Vedernikov, it is found that a pronounced maximum in the absolute magnitude of the thermopower occurs at a temperature of the order of 200–400 K. The results have been interpreted in terms of the 'weak ferromagnet' band model. Spin-mixing is briefly discussed and shown not to be of primary importance in these alloys.

1998 ◽  
Vol 11 (1) ◽  
pp. 566-566
Author(s):  
C. Jaschek ◽  
A.E. Gómez

We have analysed the standards of the MK system in the B0-F5 spectral region with the help of Hipparcos parallaxes, using only stars for which the error on the absolute magnitude is ≤ 0.3 mag. The sample stars (about one hundred) were scrutinized for companions and for interstellar extinction. We find that the main sequence is a wide band and that, although in general giants and dwarfs have different absolute magnitudes, the separation between luminosity class V and III is not clear. We conclude that there is no strict relation between luminosity class and absolute magnitude. The relation is only a statistical one and has a large intrinsic dispersion. We have analysed similarly the system of standards defined by Garrison and Gray (1994) separating low and high rotational velocity standards. We find similar effects as in the original MK system.


1966 ◽  
Vol 14 (3) ◽  
pp. 313-322 ◽  
Author(s):  
C.A Pampillo ◽  
A.E Vidoz
Keyword(s):  

2003 ◽  
Vol 60 (3) ◽  
pp. 477-480 ◽  
Author(s):  
Warley Marcos Nascimento

Lettuce (Lactuca sativa L.) seed germination is strongly temperature dependent and under high temperatures, germination of most of genotypes can be erratic or completely inhibited. Lettuce seeds of 'Dark Green Boston' (DGB) were incubated at temperatures ranging from 15° to 35°C at light and dark conditions. Other seeds were imbibed in dark at 20°; 25°; 30°; and 35°C for 8 and 16 hours and then transferred to 20 or 35°C, in dark. Seeds were also incubated at constant temperature of 20° and 35 °C, in the dark, as control. In another treatment, seeds were primed for 3 days at 15°C with constant light. DGB lettuce seeds required light to germinate adequately at temperatures above 25°C. Seeds incubated at 20°C had 97% germination, whereas seeds incubated at 35°C did not germinate. Seeds imbibed at 20°C for 8 and 16 hours had germination. At 35°C, seeds imbibed initially at 20°C for 8 and 16 hours, had 89 and 97% germination, respectively. Seeds imbibed at 25°C for 16 hours, germinated satisfactory at 35°C. High temperatures of imbibition led to no germination. Primed and non-primed seeds had 100% germination at 20°C. Primed seeds had 100% germination at 35°C, whereas non-primed seeds germinate only 4%. The first hours of imbibition are very critical for lettuce seed germination at high temperatures.


1995 ◽  
Vol 10 ◽  
pp. 399-402
Author(s):  
A.E. Gómez ◽  
C. Turon

The Hertzprung-Russel (HR) diagram luminosity calibration relies basically on three kinds of data: trigonometric parallaxes, kinematical data (proper motions and radial velocities) and cluster distances obtained by the zero-age main sequence fitting procedure. The most fundamental method to calculate the absolute magnitude is the use of trigonometric parallaxes, but up to now, accurate data only exist for stars contained in a small volume around the sun. Individual absolute magnitudes are obtained using trigonometric parallaxes or photometric and spectroscopic calibrations. In these calibrations the accuracy on the absolute magnitude determination ranges from ±0.m2 in the main sequence to ±0m5 in the giant branch. On the other hand, trigonometric parallaxes, kinematical data or cluster distances have been used to make statistical calibrations of the absolute magnitude. The standard error on the mean absolute magnitude calibrations ranges from ±0m3 to ±0m6 on the mean sequence, from ±0m5 to ±0m7 on thegiant branch and is of about 1mfor supergiants.Future improvements in the absolute magnitude determination will depend on the improvement of the basic data from the ground and space. A brief overview of the new available data is presented. In particular, the analysis of the first 30 months data of the Hipparcos mission (H30) (from the 37 months data of the whole mission) allows to perform a statistical evaluation of the improvements expected in the luminosity determination.


2001 ◽  
Vol 44 (4) ◽  
pp. 401-404 ◽  
Author(s):  
Fernanda G. A. Ferraz-Grande ◽  
Massanori Takaki

The germination of endangered species Dalbergia nigra was studied and 30.5° C was found as optimum temperature, although the species presented a broad temperature range where germination occurs and light had no effect. The analysis of kinetics of seed germination confirmed the asynchronized germination below and above the optimum temperature. The light insensitive seed and germination also at high temperatures indicated that D. nigra could occur both in understories and gaps where the mean temperature was high.


2021 ◽  
pp. 137-142
Author(s):  
Ikram Uralbaevich Tadjibaev

In the article, on the basis of observational data the problems of the specific frequency of globular clusters are studied. Possible relationships between them and the absolute stellar magnitude of their host galaxy are considered, where the observational data published in the literature were presented. It should be noted that before us the relationship between the specific frequency and the absolute magnitude is shown as exponential functions. An empirical relationship between the specific frequency and the absolute value of the host galaxy were obtained and showed that the dependence of the specific frequency on the absolute magnitude is not linear, but has a quadratic function. It is also shown that the specific frequency determines the number of globular clusters in a given galaxy relative to our Galaxy. Also in the article, based on the results of studies of the specific frequency, some discussions are presented related to the origin and evolution of globular clusters. The results obtained show that the ratios of the specific frequency to the luminosity of the host galaxy are different. Variations in the specific frequency of elliptical galaxies are associated with variations in the mass-to-luminous flux ratio. This may be due to the fact that the number of globular clusters in spiral galaxies per unit of luminosity of the halo and not of the entire galaxy. Analysis of the observational data shows that the values of the specific frequency of spiral galaxies are 5–6 times less than that of giant elliptical ones. As a result of the results of studies of the specific frequency of the globular clusters, unsolved problems are listed and possible solutions are shown. It is noted that the problem posed will be solved even more accurately if it is considered by the types of galaxies


1991 ◽  
Vol 24 (6) ◽  
pp. 1027-1034 ◽  
Author(s):  
J. P. Simon ◽  
O. Lyon

A large rapidly decreasing intensity called the `scattering tail' is generally observed at the smallest recorded angles during small-angle measurements of metallic alloys. Since this tail was interpreted as caused by a bimodal phase separation in Cu–Ni–Fe alloys and by long-wavelength concentration fluctuations in Invar alloys, these two systems were re-examined with anomalous X-ray scattering. The variation of the alloying atomic contrasts allows a discrimination between the different types of particles or defects. In neither of the two systems can the tails be interpreted as caused by large-scale concentration fluctuations. In Cu–Ni–Fe alloys, the tail is due to some kind of superficial defect (surface roughness etc.). In Invar alloys, the tail is probably due to residual impurity particles.


2011 ◽  
Vol 2011 (HITEN) ◽  
pp. 000052-000057 ◽  
Author(s):  
Liang-Yu Chen

Aluminum nitride (AlN) has been proposed as a packaging substrate material for reliable high temperature electronics operating in a wide temperature range. However, it was discovered in a recent study that the dielectric properties of some commercial polycrystalline AlN materials change quite significantly with temperature at high temperatures. These material properties resulted in undesired large and temperature-dependent parasitic parameters for a prototype chip-level package based on an AlN substrate with the yttrium oxide dopant. This paper reports a method using a coating layer of a commercial thick-film glass on the AlN substrate surface to significantly reduce both the parasitic capacitances and parasitic conductances between neighboring inputs/outputs (I/Os) of a prototype AlN chip-level package. The parasitic parameters of 8-I/Os low power chip-level packages with the insulating glass coating were characterized at frequencies from 120 Hz to 1 MHz between room temperature and 500°C. These results were compared with the parameters of AlN packages without the glass coating. The results indicate that the parasitic capacitances and conductances between I/Os of the improved prototype AlN packages are significantly reduced and stable at high temperatures. The method using a glass coating provides a feasible way to mitigate the temperature dependence of dielectric properties of AlN and further utilize AlN as a reliable packaging substrate material for high temperature applications.


Sign in / Sign up

Export Citation Format

Share Document