Multi-response optimization of CNC turning parameters of austenitic stainless steel 303 using Taguchi-based grey relational analysis

2020 ◽  
Vol 44 (4) ◽  
pp. 592-601
Author(s):  
S.R. Sundara Bharathi ◽  
D. Ravindran ◽  
A. Arul Marcel Moshi

Extensive research has been carried out to optimize the process parameters of several machining processes. Optimizing the influencing parameters of the turning operation is a precise action that determines the desired level of quality. This study focuses on the multi-criteria optimization of the CNC turning process parameters of stainless steel 303 (SS 303) material to achieve minimum surface roughness (Ra) with maximum material removal rate (MRR) by means of Taguchi-based grey relational analysis. A CNC machine was tested following Taguchi’s L9 orthogonal array design. Grey relational analysis was used as the multi-criteria optimization tool. The significance of each individual process parameter on the overall characteristics of the turned specimen was estimated using analysis of variance (ANOVA). Regression equations were generated using the input factors with the selected output parameters. In addition, a morphological study of the chips produced by the turning process was carried out using SEM images in order to relate the chip geometry with the output responses.

In this paper, a grey relational analysis method based on Taguchi is proposed to improve the multi-performance characteristics of VMC shoulder milling process parameters in the processing of AA6063 T6. Taking into account four process parameters such as coolant, depth of cut,speed and feed, there are three level of each process parameter in addition to two levels of coolant. 18 experiments were used by L18 orthogonal array using the taguchi method. Multi-performance features like surface roughness and material removal rate are used. Grey Relational Analysis method is used to obtain the Grey Relational Grade, and the multiperformance characteristics of the process are pointed out. Then, the Taguchi response table method and ANOVA are used to analysis data. In order to ensure the validity of the test results, a confirmation test was conducted. The study also shows that this method can effectively improve the multi-function characteristics of shoulder milling process.In his work microstructure and mechanical properties of AA6063 T6before and after shoulder milling have been investigated.


2021 ◽  
Vol 1149 (1) ◽  
pp. 012028
Author(s):  
Gaurav Kumar ◽  
Mohd Atif Wahid ◽  
Ankit Tomer ◽  
Mukesh Kumar ◽  
Om Prakash Singh

Author(s):  
Neeraj A ◽  
◽  
Sukhdeep S. Dhami ◽  

Nowadays, the realization of a fine surface finish is the main objective of the metal cutting industry during the turning processes.This work consists of an analysis of the work carried out by the researchers in the field of filming process parameters, to Examine the impact of speed, cutting speed (feed), and depth of cut in a computer numeric control machine. This study will provide insight into current trends research in the area of Taguchi, Grey Relational Analysis, Response Surface Method, ANOVA & CNC Turning.


2016 ◽  
Vol 854 ◽  
pp. 26-32
Author(s):  
M. Fakkir Mohamed ◽  
B. Praveen Kumar ◽  
P.L. Madhavan ◽  
M. Pradeep

This work extent with the improvement of machining parameters in turning of SS304 austenitic stainless-steel in Computer Numerical Control (CNC) shaping machine by victimization of coated inorganic compound tools. Throughout the experiment, process parameters like Speed, Feed and Depth of Cut are used to inquire their general intent on the Surface Roughness (Ra) and Material Removal Rate (MRR) as the quality targets. 9 experimental runs supported by one factor at a Time Approach as Design of Experiment and Grey Relational Analysis (GRA) method is applied to see associate degree for optimum CNC turning parameter setting. An optimal parameter combination of the turning method is obtained by victimization of Grey Relational Analysis. By dissecting the Grey Relational Grade matrix, the degree of influence for every controllable process factor onto individual quality targets is found for the higher performance characteristics.


Sign in / Sign up

Export Citation Format

Share Document