Mixed micelles of poly(styrene-b-3-(methacryloylamino)propyltrimethylammonium chloride-b-ethylene oxide) and anionic amphiphiles in aqueous solutions

2010 ◽  
Vol 88 (3) ◽  
pp. 208-216 ◽  
Author(s):  
Jingjing Liu ◽  
Airi Yoneda ◽  
Dian Liu ◽  
Yuuichi Yokoyama ◽  
Shin-ichi Yusa ◽  
...  

The micelles of poly(styrene-b-3-(methacryloylamino)propyltrimethylammonium chloride-b-ethylene oxide) (PS-b-PMAPTAC-b-PEO) have been successfully prepared in aqueous solutions. The micelles have a PS core, cationic PMAPTAC shell, and PEO corona. Due to the short PS chain (degree of polymerization = 8), the formation of micelles is difficult at a low concentration, and the micelles are detected only at concentrations higher than 1 g L–1. The addition of anionic amphiphiles, such as sodium dodecyl sulfate (SDS) and poly(methacrylic acid) (PMAA), induces the formation of mixed micelles at a low concentration level of the polymer (~0.005 g L–1). This can be ascribed to insolubilization of the cationic PMAPTAC block due to charge neutralization by the anionic amphiphiles. The binding of SDS or PMAA to the PMAPTAC block is confirmed by zeta-potential measurements. The mixed micelles are characterized by dynamic light scattering (DLS), scanning electron microscopy (SEM), and fluorescence measurements. Based on DLS measurements, it is revealed that the hydrodynamic diameter of the mixed micelles falls in the range of 120–130 nm. SEM measurements provided clear pictures of mixed micelles with a spherical morphology. The kinetics of exchange of organic dyes between the micelle particles was investigated by fluorescence techniques. The result indicates that the exchange of the dyes between the micelle particles takes places within a time scale of seconds.

2019 ◽  
Vol 21 (17) ◽  
pp. 8883-8896 ◽  
Author(s):  
Barbora Tarabová ◽  
Petr Lukeš ◽  
Malte U. Hammer ◽  
Helena Jablonowski ◽  
Thomas von Woedtke ◽  
...  

The first study providing direct fluorescence detection of peroxynitrite/peroxynitrous acid (ONOO−/ONOOH) in plasma activated liquids correlated with the chemical kinetics of ONOOH formation.


2019 ◽  
Vol 31 (3) ◽  
pp. 651-655
Author(s):  
Qidist Yilma ◽  
Dunkana Negussa ◽  
Y. Dominic Ravichandran

Kinetics of alkaline hydrolysis of crystal violet, a triphenylmethane dye in the micellar environment of cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulfonate (SDS) and binary mixtures of these surfactants was studied. The regression parameters, together with rate constants and binding constants were obtained by analyzing the rate surfactant profiles using cooperativity model. It was observed that the reaction was catalyzed by both surfactants. The catalytic factor increased by 10 times in SDS and 38 times in CTAB indicating that binding of crystal violet to the micellar surface is stronger in pure CTAB than SDS but the strength drastically reduced in the mixtures of the surfactants. Reduction of binding constant became more important as the mole fraction of CTAB was improved in the mixture. The kinetic data were investigated using Piszkiewicz model and Raghavan-Srinivasan model. The data obtained from the models were in good agreement with the experimental values.


Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1831 ◽  
Author(s):  
Samhitha Kancharla ◽  
Nathan A. Zoyhofski ◽  
Lucas Bufalini ◽  
Boris F. Chatelais ◽  
Paschalis Alexandridis

The interaction in aqueous solutions of surfactants with amphiphilic polymers can be more complex than the surfactant interactions with homopolymers. Interactions between the common ionic surfactant sodium dodecyl sulfate (SDS) and nonionic amphiphilic polymers of the poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) (PEO-PPO-PEO) type have been probed utilizing a variety of experimental techniques. The polymer amphiphiles studied here are Pluronic F127 (EO100PO65EO100) and Pluronic P123 (EO19PO69EO19), having the same length PPO block but different length PEO blocks and, accordingly, very different critical micellization concentrations (CMC). With increasing surfactant concentration in aqueous solutions of fixed polymer content, SDS interacts with unassociated PEO-PPO-PEO molecules to first form SDS-rich SDS/Pluronic assemblies and then free SDS micelles. SDS interacts with micellized PEO-PPO-PEO to form Pluronic-rich SDS/Pluronic assemblies, which upon further increase in surfactant concentration, break down and transition into SDS-rich SDS/Pluronic assemblies, followed by free SDS micelle formation. The SDS-rich SDS/Pluronic assemblies exhibit polyelectrolyte characteristics. The interactions and mode of association between nonionic macromolecular amphiphiles and short-chain ionic amphiphiles are affected by the polymer hydrophobicity and its concentration in the aqueous solution. For example, SDS binds to Pluronic F127 micelles at much lower concentrations (~0.01 mM) when compared to Pluronic P123 micelles (~1 mM). The critical association concentration (CAC) values of SDS in aqueous PEO-PPO-PEO solutions are much lower than CAC in aqueous PEO homopolymer solutions.


Langmuir ◽  
2011 ◽  
Vol 27 (9) ◽  
pp. 5275-5281 ◽  
Author(s):  
Miroslav Štěpánek ◽  
Pavel Matějíček ◽  
Karel Procházka ◽  
Sergey K. Filippov ◽  
Borislav Angelov ◽  
...  

2017 ◽  
Vol 105 (3) ◽  
Author(s):  
Amir Ezzat ◽  
Mamdoh R. Mahmoud ◽  
Mohamed A. Soliman ◽  
Ebtissam A. Saad ◽  
Abdelhakim Kandil

AbstractThe present study aims at the removal of Eu(III) from aqueous solutions by sorptive flotation process. This process involves adsorption of Eu(III) onto bentonite and kaolinite clays followed by floatation using sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB) collectors. The effect of adsorption parameters (pH, contact time, clay weight, Eu(III) concentration, ionic strength) as well as flotation parameters (collector and frother concentrations, bubbling time, concentrations of foreign cations and anions) on the removal efficiency of Eu(III) were studied. The obtained results show that Eu(III) ions are removed efficiently (R% ~ 95%) at pH=4 after 1 h shaking with clay and 15 min floatation. The adsorption kinetics of Eu(III) onto the employed clays followed the pseudo-second-order model and the equilibrium data fitted well to the Freundlich isotherm model.


Sign in / Sign up

Export Citation Format

Share Document