EXCITED STATES OF ACETYLENE AND THEIR ROLE IN PYROLYSIS

1958 ◽  
Vol 36 (1) ◽  
pp. 131-136 ◽  
Author(s):  
G. J. Minkoff

Previous theories of acetylene pyrolysis are reviewed in the light of recent work by Minkoff, Newitt, and Rutledge. It is shown that the relatively large rates observed at the beginning of the induction period do not agree with mechanisms involving the intervention of comparatively stable dimers. The required kinetic form is obtained, however, if a triplet diradical is produced on the surface in a bimolecular process, followed by gas phase polymerization, with some chain ending on the surface. The detailed mechanism closely resembles Flory's scheme for liquid phase vinyl polymerization. The shape of the radical is discussed, and it is suggested that the trans-configuration leads to polymerization, while the cis facilitates dehydrogenation.

1991 ◽  
Vol 24 (7) ◽  
pp. 277-284 ◽  
Author(s):  
E. Gomólka ◽  
B. Gomólka

Whenever possible, neutralization of alkaline wastewater should involve low-cost acid. It is conventional to make use of carbonic acid produced via the reaction of carbon dioxide (contained in flue gases) with water according to the following equation: Carbon dioxide content in the flue gas stream varies from 10% to 15%. The flue gas stream may either be passed to the wastewater contained in the recarbonizers, or. enter the scrubbers (which are continually sprayed with wastewater) from the bottom in oountercurrent. The reactors, in which recarbonation occurs, have the ability to expand the contact surface between gaseous and liquid phase. This can be achieved by gas phase dispersion in the liquid phase (bubbling), by liquid phase dispersion in the gas phase (spraying), or by bubbling and spraying, and mixing. These concurrent operations are carried out during motion of the disk aerator (which is a patent claim). The authors describe the functioning of the disk aerator, the composition of the wastewater produced during wet gasification of carbide, the chemistry of recarbonation and decarbonation, and the concept of applying the disk aerator so as to make the wastewater fit for reuse (after suitable neutralization) as feeding water in acetylene generators.


1999 ◽  
Vol 39 (4) ◽  
pp. 85-92 ◽  
Author(s):  
J. Behrendt

A mathematical model for nitrification in an aerated fixed bed reactor has been developed. This model is based on material balances in the bulk liquid, gas phase and in the biofilm area. The fixed bed is divided into a number of cells according to the reduced remixing behaviour. A fixed bed cell consists of 4 compartments: the support, the gas phase, the bulk liquid phase and the stagnant volume containing the biofilm. In the stagnant volume the biological transmutation of the ammonia is located. The transport phenomena are modelled with mass transfer formulations so that the balances could be formulated as an initial value problem. The results of the simulation and experiments are compared.


1986 ◽  
Vol 51 (6) ◽  
pp. 1222-1239 ◽  
Author(s):  
Pavel Moravec ◽  
Vladimír Staněk

Expression have been derived in the paper for all four possible transfer functions between the inlet and the outlet gas and liquid steams under the counter-current absorption of a poorly soluble gas in a packed bed column. The transfer functions have been derived for the axially dispersed model with stagnant zone in the liquid phase and the axially dispersed model for the gas phase with interfacial transport of a gaseous component (PDE - AD). calculations with practical values of parameters suggest that only two of these transfer functions are applicable for experimental data evaluation.


1981 ◽  
Vol 46 (8) ◽  
pp. 1941-1946 ◽  
Author(s):  
Karel Setínek

A series of differently crosslinked macroporous 2,3-epoxypropyl methacrylate-ethylenedimethacrylate copolymers with chemically bonded propylsulphonic acid groups were used as catalysts for the kinetic study of reesterification of ethyl acetate by n-propanol in the liquid phase at 52 °C and in the gas phase at 90 °C. Analysis of kinetic data by the method of nonlinear regression for a series of equations of the Langmuir-Hinshelwood type showed that kinetic equations which describe best the course of the reaction are the same as for the earlier studied sulphonated macroporous styrene-divinylbenzene copolymers. Compared types of catalysts differ, however, in the dependence of their activity on the degree of crosslinking of the copolymer used.


1968 ◽  
Vol 46 (20) ◽  
pp. 3235-3240 ◽  
Author(s):  
Gordon R. Freeman ◽  
E. Diane Stover

The initial yields of the major products of the gamma radiolysis of liquid methylcyclopentane (MCP) at 25° are: G(H2) = 4.2, G(1-methylcyclopentene plus methylenecyclopentane) = 2.7, G(3- plus 4-methyl-cyclopentene) = 1.0, G(open chain hexene) = 1.0, and G(bimethylcyclopentyl) = 0.9. The effects of scavengers on the product yields are reported and the mechanism is discussed.The liquid phase radiolytic decompositions of cyclohexane (CH), methylcyclohexane (MCH), cyclopentane (CP), and MCP are compared. The net amount of C—C bond cleavage is much greater in the five-membered than in the six-membered rings. Methyl substitution on the ring reduces G(H2) by about one unit, mainly because of the formation of a type of ion (QH+) that does not yield hydrogen when neutralized by an electron. The QH+ type ions are formed in MCH and MCP, but not in CH and CP. In all the systems, another type of ion (N+) that does not yield hydrogen when neutralized by an electron is formed with a G value of about unity. The type of ion (PH+) that does yield hydrogen when neutralized by an electron has a G value of 3.4 in CH and CP, but only 2.0 in MCP. It is concluded that G(total ionization) is in the vicinity of 4.4 in the liquid compounds, virtually the same as the gas phase values.


Catalysts ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 430 ◽  
Author(s):  
Elnaz Bahadori ◽  
Antonio Tripodi ◽  
Alberto Villa ◽  
Carlo Pirola ◽  
Laura Prati ◽  
...  

The photoreduction of CO2 is an intriguing process which allows the synthesis of fuels and chemicals. One of the limitations for CO2 photoreduction in the liquid phase is its low solubility in water. This point has been here addressed by designing a fully innovative pressurized photoreactor, allowing operation up to 20 bar and applied to improve the productivity of this very challenging process. The photoreduction of CO2 in the liquid phase was performed using commercial TiO2 (Evonink P25), TiO2 obtained by flame spray pyrolysis (FSP) and gold doped P25 (0.2 wt% Au-P25) in the presence of Na2SO3 as hole scavenger (HS). The different reaction parameters (catalyst concentration, pH and amount of HS) have been addressed. The products in liquid phase were mainly formic acid and formaldehyde. Moreover, for longer reaction time and with total consumption of HS, gas phase products formed (H2 and CO) after accumulation of significant number of organic compounds in the liquid phase, due to their consecutive photoreforming. Enhanced CO2 solubility in water was achieved by adding a base (pH = 12–14). In basic environment, CO2 formed carbonates which further reduced to formaldehyde and formic acid and consequently formed CO/CO2 + H2 in the gas phase through photoreforming. The deposition of small Au nanoparticles (3–5 nm) (NPs) onto TiO2 was found to quantitatively influence the products distribution and increase the selectivity towards gas phase products. Significant energy storage in form of different products has been achieved with respect to literature results.


2018 ◽  
Vol 90 (24) ◽  
pp. 14586-14592 ◽  
Author(s):  
Igor Telegeiev ◽  
Oumaima Thili ◽  
Adrien Lanel ◽  
Philippe Bazin ◽  
Yoann Levaque ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document