The Crystal Structure of a Thiathiophthen Nitrogen Isostere, 3,5-Epidithio-2,5-diphenyl-2,4-pentadienylidene-3-aminoquinoline

1971 ◽  
Vol 49 (2) ◽  
pp. 167-172 ◽  
Author(s):  
F. Leung ◽  
S. C. Nyburg

The crystal structure of a thiathiophthen nitrogen isostere (7) has been solved by X-ray analysis. The crystal belongs to the triclinic system with unit cell dimensions: a = 11.275(11), b = 9.558(10), c = 10.797(10) Å, α = 92.50(10), β = 116.98(10), γ = 92.61(10)°. There are two molecules per unit cell, space group [Formula: see text]. The data were collected by diffractometer with CuKα radiation. The structure was solved by symbolic addition procedures, and fully refined anisotropically using full-matrix least squares to an R factor of 6.3%.The S—S and S—N bond lengths were found to be 2.364 and 1.887 Å, respectively. This reveals the partial bonding character between S … S … N atoms.

1982 ◽  
Vol 60 (22) ◽  
pp. 2852-2855 ◽  
Author(s):  
Miroslaw Cygler ◽  
Maria Przybylska ◽  
Richard MacLeod Elofson

Benzenediazonium tetrafluoroborate, C6H5N2+•BF4−, crystallizes in space group P21/a with unit cell dimensions a = 17.347(2), b = 8.396(1), c = 5.685(1) Å, β = 92.14(1)°, Z = 4. The structure was solved by direct phasing methods using the program SHELX 76. The parameters were refined by full-matrix least-squares to a final R = 0.063 for 1346 observed reflections. The bond lengths and angles agree very well with those of Rømming for benzenediazonium chloride. The C—N and N≡N bond lengths are 1.415(3) and 1.083(3) Å, respectively, and the bonds of the benzene ring do not show any significant differences as they vary from 1.371(5) to 1.383(4) Å. There are three [Formula: see text] close contacts of ≤ 2.84 Å and the positive charge appears to be shared between the nitrogen atoms.


1988 ◽  
Vol 41 (4) ◽  
pp. 597 ◽  
Author(s):  
MI Bruce ◽  
MP Cifuentes ◽  
KR Grundy ◽  
MJ Liddell ◽  
MR Snow ◽  
...  

An improved, one-pot synthesis is reported for the [Ru (dppm -P)(dppm -P, P′)(η-C5H5)]+ cation as its BF4- salt. The crystal structure of [Ru ( dppm - P)( dppm -P,P′)(η-C5H5)]+, obtained as the mixed PF6-/PO2F2- salt, has also been determined. There are few differences in dimensions between the mono- and bi-dentate dppm ligands; chelation sharply reduces the P-CH2-P angle, and one phenyl group on each phosphorus is bent away from the metal. Crystals are monoclinic, space group C2/c with unit cell dimensions a 21.743(3), b 23.594(3), c 21.352(3)Ǻ, β 110.17(1) and Z 8. The structure was refined by a full-matrix least-squares procedure to final R 0.078 and Rw 0.087 for 4490 reflections with I > 2.5σ(I).


1970 ◽  
Vol 48 (6) ◽  
pp. 890-894 ◽  
Author(s):  
C. Calvo ◽  
K. Neelakantan

The crystal structure of Mg2As2O7 has been refined by full matrix least squares procedures using 587 observed reflections. The structure of Mg2As2O7 is of the thortveitite type, as reported by Łukaszewicz, with space group C2/m and unit cell dimensions a = 6.567(2) Å, b = 8.524(4) Å, c = 4.739(1) Å, β = 103.8(1)°, and Z = 2. The As—O—As group in the anion appears to be linear but the central oxygen atom undergoes considerable disorder in the plane perpendicular to this group. The AsO bond distances uncorrected for thermal motion are 1.67 Å for the As—O(—As) bond and 1.66 and 1.65 Å for the terminal As—O bonds. The final R value obtained is 0.088.


1973 ◽  
Vol 51 (1) ◽  
pp. 70-76 ◽  
Author(s):  
Robert D. Shannon ◽  
Crispin Calvo

The structure of synthetic chervetite has been refined by full matrix least-squares to a ωR = 0.029 using 1105 reflections. Unit cell dimensions are a = 13.3689(7), b = 7.1607(4), c = 7.1027(4) Å, β = 105935(5)°, and the space group is P21/a. The structure, originally solved by Kawahara, is a dichromate-type structure with a V2O74− group eclipsed to within 11 ± 5°. The Pb2+ ions are irregularly coordinated to 8 or 9 oxygens with distances from 2.40 to 3.20 Å. The distortion of the Pb–O distances is considerably greater than the corresponding distortions of the Sr–O distances in the similar β-Sr2V2O7 structure and is related to the tendency of Pb2+ to form directional covalent bonds. The V–O distances range from 1,665 to 1.720 Å for terminal oxygens and are 1.812 and 1.821 Å for the bridging oxygens. The V–O distances are consistent with the strengths of the Pb—O bonds.


1975 ◽  
Vol 30 (1-2) ◽  
pp. 22-25 ◽  
Author(s):  
M. L. Ziegler ◽  
H.-E. Sasse ◽  
B. Nuber

The structure of the title compound has been determined from three dimensional X-ray data by Patterson and Fourier methods. The crystals are orthorombic, with unit cell dimensions a = 1181,50 pm, b = 943,68 pm, c = 1181,50 pm, space group D2h16 and Z = 4. Least squares refinement, by use of 1540 independent reflections measured on a diffractometer has reached R = 5,9%.There are discrete C7H7Mo(CO)2 SnCl3 molecules, the molybdenum-tin bond has been dicussed together with the corresponding bonds in other C7H7Mo(CO)2 SnR3 compounds.


1992 ◽  
Vol 45 (11) ◽  
pp. 1933 ◽  
Author(s):  
PR Traill ◽  
AG Wedd ◽  
ERT Tiekink

The characterization of two MoVI complexes, cis -[MoO2(2-pymS)2] and cis -[MoO2(2-pyS)2] (where 2-pymSH is pyrimidine-2-thiol and 2-pySH is pyridine-2-thiol), and their reaction with Ph3P are reported. The X-ray structure of cis -[MoO2(2-pymS)2] shows the molybdenum atom to exist in a distorted octahedral geometry defined by two mutually cis oxygen atoms and two chelating 2-pymS ligands so that the two sulfur atoms occupy approximate trans positions. Crystals of cis -[MoO2(2-pymS)2] are monoclinic, space group P 21/n, with unit cell dimensions: a 9.301(3), b 12.121(2), c 11.303(3) �, β 112.62(3)�, V 1176.3 �3, Z 4. The structure was refined by a full-matrix least-squares procedure to R 0.067 for 1858 reflections with I ≥ 2.5 (I).


1987 ◽  
Vol 65 (12) ◽  
pp. 2830-2833 ◽  
Author(s):  
David M. McKinnon ◽  
Peter D. Clark ◽  
Robert O. Martin ◽  
Louis T. J. Delbaere ◽  
J. Wilson Quail

3,5-Diphenyl-1,2-dithiolium-4-olate (1) reacts with aniline to form 1-phenylimino-2-phenylamino-3-phenylindene (3a). Under suitable conditions, 6-phenylbenzo[b]indeno[1,2-e]-1,2-thiazine is also formed. These structures are confirmed by alternative syntheses. The molecular structure of 3a has been determined by single crystal X-ray diffraction. Compound 3a crystallizes in the monoclinic space group C2/c with unit cell dimensions a = 20.777(3) Å, b = 6.130(3) Å, c = 31.327(3) Å, 3 = 99.59(1)°, and Z = 8. The structure was solved by direct methods and refined by least squares to a final R = 0.055. The molecular structure of 3a shows the three phenyl containing substituents to have the planes of their ring systems tilted between 40° and 60° from the plane of the indene system due to steric repulsions.


1997 ◽  
Vol 53 (5) ◽  
pp. 787-794 ◽  
Author(s):  
A. E. Cohen ◽  
B. M. Craven ◽  
W. T. Klooster

Spermine phosphate hexahydrate crystallizes in space group P21/a with unit-cell dimensions a = 7.931 (1), b = 23.158 (5), c = 6.856 (2) Å, and \beta = 113.44 (2)° at 125 K with unit-cell contents [(C10H30N4)^{4+}_{2} (HPO4)^{2-}_{4}.12H2O]. The packing of spermines and monohydrogen phosphates in this crystal structure has features which may be relevant to the binding of spermine to DNA. Another important structural feature is the presence of channels containing water that is hydrogen bonded as in ice-Ih with disordered protons. The channels occur between sheets of spermine long chains and are also bordered by hydrogen-bonded monohydrogen phosphate chains. The hydrogen-bonding scheme of these water chains proposed on the basis of an earlier X-ray study is now confirmed. Nuclear positions, anisotropic mean-square (m.s.) displacements, an overall scale factor and two extinction parameters (\rho and g) were refined using full-matrix least-squares giving values of R(F^{2}_{o}) = 0.09, Rw(F^{2}_{o}) = 0.11 and S = 1.02. Thermal vibrational analysis revealed that the backbone of the spermine cation can be described as a single rigid segment with a substantial libration of 27 deg2 around the spermine molecular long axis.


1973 ◽  
Vol 51 (13) ◽  
pp. 2073-2076 ◽  
Author(s):  
I. D. Brown ◽  
C. J. L. Lock ◽  
Che'ng Wan

One of the compounds obtained by reacting acetylacetone with oxoethoxodichlorobis(triphenylphosphine)rhenium(V) has been shown by single crystal X-ray diffraction to be trans-dichlorobis(pentane-2,4-dionato)rhenium(IV). The crystals are triclinic, a = 8.032(4), b = 8.344(6), c = 7.429(6) Å, α = 118.1(2), β = 92.3(2), γ = 55.5(2)°, [Formula: see text], Z = 1. Intensities were measured with a microdensitometer from photographs recorded on an integrating precession camera. Of the 991 measured reflections all were observed and 984 were used in the refinement. The structure was refined by full matrix least squares to an R2 value of 0.0685. The compound was found to be a trans-monomer, in contrast to the dimeric structure claimed to exist in solution. The ligand atoms bonded to rhenium lie almost exactly at the apices of an octahedron and the bond lengths (Re—Cl, 2.326(8); Re—O1, 1.97(1); Re—O2, 2.01(1) Å) are in the range expected.


1991 ◽  
Vol 6 (1) ◽  
pp. 2-9 ◽  
Author(s):  
J. C. Taylor

AbstractA Fortran 77 computer program has been developed for the quantitative analysis of minerals by multiphase profile analysis of the complete powder diffraction pattern. Featured are full-matrix least-squares refinement of 14 Rietveld “instrumental parameters” (phase scales, asymmetry, preferred orientations (March model), linewidths, instrument zero, lineshapes and unit cell dimensions), Brindley particle absorption contrast factors and amorphicity corrections. The program uses a crystal structure Databank, which contains information on absorption coefficients, unit cell data and crystal structures for some 90 common minerals. New minerals can be easily added. Structure parameters are also refinable by a profile decomposition method using a program called STRUCT. The sum of the calculated patterns, derived from the crystal structure data, is fitted to the observed pattern by a program called TRACSCAL which runs in singlepass multiphase mode and, after the above corrections have been applied, the weight percentages of the component phases are calculated from the Rietveld scaling factors.The program runs on an IBM-compatible AT computer with 640K of RAM, on an extended memory AT, or a mainframe system. Examples of its use are given with standard mixtures and naturally occurring specimens. On an AT computer with 20MHz clock speed a scaling run, including data input, reading of the pattern, processing of (hkl) files, calculation of the profile and one cycle of least squares fitting takes about 30 seconds for binary standard mixtures and about 2.5 minutes for a 7-phase natural bauxite pattern containing 320 independent (hkl) reflections.


Sign in / Sign up

Export Citation Format

Share Document