The Vibrational Spectra and Crystal Structure of Acenaphthylene

1973 ◽  
Vol 51 (3) ◽  
pp. 402-404 ◽  
Author(s):  
A. Bree ◽  
R. A. Kydd ◽  
V. V. B. Vilkos ◽  
R. S. Williams

A study of the polarized infrared and Raman spectra of acenaphthylene single crystals has been made. These results, together with Gordon and Yang's preliminary X-ray work, suggest that the molecules pack in some disordered arrangement in the solid at room temperature. Most of the A1 fundamentals were identified in the Raman solution spectrum from their low depolarization ratio, and a few tentative assignments of nontotally symmetric fundamentals were made.

1986 ◽  
Vol 41 (8) ◽  
pp. 958-970 ◽  
Author(s):  
Ralf Steudel ◽  
Jürgen Steidel ◽  
Torsten Sandow

AbstractThe homocyclic S11 and S13 molecules have been synthesized from titanocenepentasulfide and S6Cl2 or S8Cl2, respectively, and obtained as yellow crystals which are metastable for several days at 20 °C. X-Ray structural analyses of single crystals at -105± 5 °C exhibited molecules of approximately C2 symmetry with bond distances (d), bond angles (a) and torsional angles (r) in the following ranges: S11 : d = 203.2 -211.0 pm, α = 103.3-108.6°, τ = 69.3 - 140.5°; S13: d = 197.8 - 211.3 pm, α = 102.8-111.1°, τ = 29.5 - 116.3°. Infrared and Raman spectra of S11 and S13 are reported. In addition, the synthesis of S6Cl2 and S8Cl2 from S6 or S8, respectively, and chlorine is described.


2003 ◽  
Vol 2003 (8) ◽  
pp. 518-521 ◽  
Author(s):  
M.K. Marchewka

Room temperature powder infrared and Raman measurements for the new melaminium salt, bis(2,4,6-triamino-1,3,5-triazin-1-ium) sulfate dihydrate, 2C3H7N6+·SO42-·2H2O, in the crystalline state, were carried out. The vibrational spectra in the region of internal vibrations of the ions corroborate recent X-ray data of Janczak et al. Some spectral features of this new crystal are referred to those of other crystalline melaminium salts.


1998 ◽  
Vol 51 (4) ◽  
pp. 285 ◽  
Author(s):  
Graham A. Bowmaker ◽  
Jack M. Harrowfield ◽  
Peter C. Junk ◽  
Brian W. Skelton ◽  
Allan H. White

Room-temperature single-crystal X-ray studies are recorded for some dimethyl sulfoxide (dmso) solvates of bismuth(III) bromide and iodide. Colourless BiBr3.3dmso is triclinic, P-1, a 8·467(4), b 9·109(4), c 13·901(4) Å, α 76·34(4), β 76·95(4), γ 64·56(4)°, Z = 2; conventional R on |F| was 0·050 for No 2306 independent ‘observed’ (I > 3σ(I)) reflections. The complex is mononuclear with a quasi-octahedral fac-bismuth environment, [(dmso-O)3BiBr3], isomorphous with the previously determined chloride. Orange BiI3-2dmso is triclinic, P-1, a 12·558(2), b 8·962(2), c 8·342(1) Å, α 61·85(1), β 78·27(1), γ 76·89(2)°, Z = 2 f.u., R 0·048 for No 1953. The complex is binuclear, a pair of iodide atoms bridging the two bismuth atoms, [(dmso-O)2I2Bi(µ-I)2BiI2(O-dmso)2]; the two O-dmso ligands about each six-coordinate bismuth lie trans. Red BiI3.2 ⅔ dmso is triclinic, P-1, a 16·435(6), b 14·926(2), c 12·396(3) Å, α 74·89(2), β 73·24(2), γ 79·18(2)°, Z = 6, R 0·059 for No 5858. The complex is [Bi(O-dmso)8] [Bi2I9], the eight-coordinate metal environment of the cation being, unusually, dodecahedral; in the anion a pair of quasi-octahedral six-coordinate bismuth atoms are bridged by three iodides, [I3Bi(µ-I)3BiI3]3-. Bands in the far-infrared and Raman spectra due to the v(BiX) modes are assigned and discussed in relation to the structures of the complexes. The assignment of the v(BiO) modes is discussed.


2008 ◽  
Vol 63 (5) ◽  
pp. 530-536 ◽  
Author(s):  
Olaf Reckeweg ◽  
Francis J. DiSalvo

Single crystals of Ca11N6[CN2]2 (dark red needles, tetragonal, P42/mnm (no. 136), a = 1456.22(5), and c = 361.86(2) pm, Z = 2), Ca4N2[CN2] (transparent yellow needles, orthorhombic, Pnma (no. 62), a = 1146.51(11), b = 358.33(4), and c = 1385.77(13) pm, Z = 4) and Ca[CN2] (transparent, colorless, triangular plates, rhombohedral, R3̅m (no. 166), a = 369.00(3), and c = 1477.5(3) pm, Z = 3) were obtained by the reaction of Na2[CN2], CaCl2 and Ca3N2 (if demanded by stoichiometry) in arc-welded Ta ampoules at temperatures between 1200 - 1400 K. Their crystal structures were re-determined by means of single crystal X-ray structure analyses. Additionally, the Raman spectra were recorded on these same single crystals, whereas the IR spectra were obtained with the KBr pellet technique. The title compounds exhibit characteristic features for carbodiimide units with D∞h symmetry (d(C-N) = 121.7 - 123.8 pm and ∡ (N-C-N) = 180°). The vibrational frequencies of these units are in the expected range (Ca11N6[CN2]2: νs = 1230, νs = 2008; δ = 673/645/624 cm−1; Ca4N2[CN2]: νs = 1230, νs = 1986; δ = 672/647 cm−1; Ca[CN2]: νs = 1274, νs = 2031, δ = 668 cm−1). The structural results are more precise than the previously reported data, and with the newly attained Raman spectrum of Ca11N6[CN2]2 we correct data reported earlier.


1984 ◽  
Vol 39 (4) ◽  
pp. 357-361 ◽  
Author(s):  
Robert Becker ◽  
Wolfgang Brockner ◽  
Herbert Schäfer

Pb2P2Se6 crystallizes in the monoclinic system, space group Pn (No. 13) with the lattice constantsa = 974.2 (4) pm. b = 766.2 (3) pm. c = 689.8 (3) pm, β=91.44(5)°.The title compound is isotypic to the homologous Pb2P2S6. In the structure there are discrete P2Se4-6 anions.Far infrared, infrared and Raman spectra of this compound have been recorded. The observed frequencies are assigned on the basis of P2Se4-6 units with C2h symmetry in the crystal. DTA-data have been determined and interpreted.


1978 ◽  
Vol 33 (12) ◽  
pp. 1386-1392 ◽  
Author(s):  
Jochen Ellermann ◽  
Helmut A. Lindner ◽  
Horst Schössner ◽  
Gerhard Thiele ◽  
Gerd Zoubek

Abstract The organocyclotriarsane, CH3C(CH2As)3 (1), reacts with chromium hexacarbonyl on ultraviolet irradiation to give the complex CH3C(CH2As)3Cr(CO)5 (2), in which the cyclo-triarsane is behaving as a monodentate ligand. The crystal structure of 2 has been determinated by X-ray diffraction. The monoclinic unit cell (space group P21/n) contains 4 isolated molecules in a hexagonal closest packing. The mass spectrum of 2 shows the parent peak and clear fragmentation patterns. The infrared and Raman spectra are reported for 1 and 2 in the 3000-30 cm-1 region. Most of the fundamental vibrations are assigned.


2012 ◽  
Vol 67 (6) ◽  
pp. 543-548 ◽  
Author(s):  
Hans-Christian Böttcher ◽  
Peter Mayer ◽  
Hubert Schmidbaur

The synthesis and the characterization of the complex salt [Au(tBu2PH)2][HCl2] (2) resulting from the reaction of hydrogen tetrachloridoaurate(III) hydrate with tBu2PH in dichloromethane at room temperature is reported. Single crystals of 2 have been analyzed by X-ray crystallography: monoclinic, P21=c, Z = 12, a = 12:0805(3), b = 12:3729(4), c = 46:7506(13) Å ; ß = 90:948(2)°; V = 6986:9(3) Å3; T = 173(2) K. The hydrogen bihalide anions [HCl2]- fill the interstices between the large complex cations [Au(tBu2PH)2]+ in the crystal.


2004 ◽  
Vol 82 (2) ◽  
pp. 301-305 ◽  
Author(s):  
Kenneth CW Chong ◽  
Brian O Patrick ◽  
John R Scheffer

When crystals of 9-tricyclo[4.4.1.0]undecalyl-4-(carbomethoxy)phenyl ketone (1) were allowed to stand in the dark for extended periods of time at room temperature, the compound underwent a thermal reaction — the enolene rearrangement — to afford enol 2. The crystals remained transparent and appeared unchanged in shape as the reaction proceeded. X-ray diffraction data were collected on single crystals containing 17%, 25%, 66%, and 100% of the enol. The crystal structure of a simple enol was obtained via this novel single-crystal-to-single-crystal enolene rearrangement.Key words: single crystal, thermal, rearrangement, enol, enolene.


2011 ◽  
Vol 66 (2) ◽  
pp. 107-114 ◽  
Author(s):  
Stephanie C. Neumair ◽  
Johanna S. Knyrim ◽  
Oliver Oeckler ◽  
Reinhard Kaindl ◽  
Hubert Huppertz

The cubic iron hydroxy boracite Fe3B7O13OH・1.5H2O was synthesized from Fe2O3 and B2O3 under high-pressure/high-temperature conditions of 3 GPa and 960 °C in a modified Walker-type multianvil apparatus. The crystal structure was determined at room temperature by X-ray diffraction on single crystals. It crystallizes in the cubic space group F4̄3c (Z = 8) with the parameters a = 1222.4(2) pm, V = 1.826(4) nm3, R1 = 0.0362, and wR2 = 0.0726 (all data). The B-O network is similar to that of other cubic boracites.


1999 ◽  
Vol 54 (9) ◽  
pp. 1116-1121
Author(s):  
A. Strueß ◽  
W. Preetz

By careful acidification of the aqueous solution of trans-K2[OsO2(OH)4] in the presence of the required amount of cyanide ions with oxalic acid, malonic acid or oxamide the osmyl complexes trans-[OsO2(CN)2(ox)]2- (1), trans-[OsO2(CN)2(mal)]2- (2) und trans-[OsO2(CN)2(N2H2C2O2)]2- (3) are formed. The IR and Raman spectra of the (n-Bu4N) and (Et4N) salts of 1, 2 und 3 were measured at room temperature. Based on the molecular parameters of the X-ray determination of related complexes normal coordinate analyses have been performed and the vibrations were assigned. The valence force constants are fd(C≡N ) = 16.95, fd(Os=O) = 6.68 - 6.70, fd(Os-O) = 2.55 - 2.60, fd(Os-C) = 2.55 and fd(Os-N) = 2.30 mdyn/Å. For the chelate ligands, fd(C =0) ranges from 11.03 - 11.15, fd(C-O/N) from 4.86 - 5.05 and fd(C-C) from 4.07 - 4.70 mdyn/Å.


Sign in / Sign up

Export Citation Format

Share Document