The proximate coupling constant, 5J(H,CH3), and the torsional mobility of the thiomethyl group in some thioanisole derivatives

1991 ◽  
Vol 69 (4) ◽  
pp. 620-624 ◽  
Author(s):  
Ted Schaefer ◽  
Rudy Sebastian ◽  
Salman R. Salman ◽  
James D. Baleja ◽  
Glenn H. Penner ◽  
...  

The proximate coupling constants, 5J, between ortho and methyl protons in thioanisole and 18 of its derivatives are discussed as conformational indicators. On the assumption that 5J varies as cos4θ, for 0° ≤ θ ≤ 90°, θ being the angle by which the methyl group twists out of the aromatic plane, 5J for θ = 0° follows as −0.43 (2) Hz from the known internal barrier in thioanisole in solution. A measurement of 5J in meta- or para-substituted thioanisole derivatives then yields an approximate value for the twofold barrier to rotation about the Csp2—S bond. For derivatives containing an ortho substituent, 5J yields an estimate of the torsion angle for the thiomethyl moiety. In some instances these angles are compared with those derived from long-range 1H, 13C and 13C, 13C coupling constants. The size of the ortho substituent appears to have only a small effect on the magnitude of 5J. The major determinant of the latter appears to be the manner in which the substituent perturbs the mobile bond order of the Csp2—S bond. Key words: spin–spin coupling constants, thioanisole derivatives; 1H NMR, thioanisole derivatives; conformations, thioanisole derivatives; conformations, torsional motion of SCH3 group.

1995 ◽  
Vol 73 (9) ◽  
pp. 1478-1487 ◽  
Author(s):  
Ted Schaefer ◽  
Scott Kroeker ◽  
David M. McKinnon

The 1H nuclear magnetic resonance spectra of phenylallene, diluted in acetone-d6 and benzene-d6, yield long-range coupling constants over as many as eight formal bonds between the ring and side-chain protons. These are discussed in terms of σ- and π-electron spin–spin coupling mechanisms, which are sensitive to the torsion angle between the allenyl and phenyl fragments. The torsion angle is assessed by means of molecular orbital computations of the internal rotational potential, whose height is calculated as 16.0 kJ/mol at the MP2/6-31G* level of correlation-gradient theory. Comparison with experimental and theoretical internal rotational potentials for styrene suggests that steric repulsions in the planar form of styrene amount to about 4 kJ/mol. In a field of 7.0 T, phenylallene is partially aligned, entailing a positive dipolar coupling constant between the methylene protons, from which absolute signs of the spin–spin coupling constants involving these protons can be inferred. Such coupling constants over seven and eight bonds, to the meta and para protons, are taken as being mediated by the extended π-electron system, providing a measure of π-electron contributions to coupling constants between meta protons and those in side chains (spin correlation). Some coupling constants between protons and 13C nuclei in the side chain, as well as between ring protons and these 13C nuclei, are also discussed in terms of spin coupling mechanisms. Solvent perturbations of one-bond proton–carbon coupling constants in the allenyl group do not follow the usual pattern in which an increase in polarity of the solvent is associated with an increase in the magnitude of the coupling constant. Keywords: 1H NMR, phenylallene; 1H NMR, long-range spin–spin coupling constants in phenylallene; phenylallene, internal rotational potential, molecular orbital computations; molecular orbital calculations, an internal rotational potential in phenylallene.


1996 ◽  
Vol 74 (8) ◽  
pp. 1524-1525 ◽  
Author(s):  
Ted Schaefer ◽  
Guy M. Bernard ◽  
Frank E. Hruska

An excellent linear correlation (r = 0.9999) exists between the spin–spin coupling constants 1J(1H,13C), in benzene dissolved in four solvents (R. Laatikainen et al. J. Am. Chem. Soc. 117, 11006 (1995)) and Ando's solvation dielectric function, ε/(ε – 1). The solvents are cyclohexane, carbon disulfide, pyridine, and acetone. 1J(1H,13C)for gaseous benzene is predicted to be 156.99(2) Hz at 300 K. Key words: spin–spin coupling constants, 1J(1H,13C) for benzene in the vapor phase; spin–spin coupling constants, solvent dielectric constant dependence of 1J(1H,13C) in benzene; benzene, estimate of 1J(1H,13C) in the vapor; nuclear magnetic resonance, estimate of 1J(1H,13C) in gaseous benzene.


1989 ◽  
Vol 67 (11) ◽  
pp. 1847-1850
Author(s):  
Gerald Norman Pecksen ◽  
Raymond Frederick Martin White

Thallium to fluorine spin–spin coupling constants have been measured for a number of fluoro- and trifluoro-methyl-substituted mono- and di-arylthallium derivatives. The results provide evidence of "through-space" coupling in the diaryl derivatives when the fluoro- or trifluoro-methyl group is ortho to the thallium atom. Keywords: thallium, fluorine, NMR, through-space coupling.


1983 ◽  
Vol 61 (1) ◽  
pp. 26-28
Author(s):  
Ted Schaefer ◽  
Rudy Sebastian

The 1H nmr spectral parameters are extracted for a 4 mol% solution of 2-methylthiobenzaldehyde in CCl4 at 305 K. The long-range spin–spin coupling constants involving the aldehydic and methyl protons are consistent only with a preferred conformation in which all heavy atoms are coplanar, as are the chemical shifts of the ring and methyl protons. This conclusion contradicts previous interpretations of the dipole moment, the nmr parameters, and of the infrared data for CCl4 solutions. The present data show that the O-syn and O-anti forms of the compound are present in roughly equal proportions.


1994 ◽  
Vol 72 (9) ◽  
pp. 1926-1932 ◽  
Author(s):  
Steven H. Bertz ◽  
Weijiang Zhang ◽  
James M. Cook ◽  
Martha D. Bruch ◽  
Lynn W. Jelinski

The configurational isomers of the title compounds consist of four fused five-membered rings. They contain tightly coupled 1H NMR spin systems, which provide excellent models for establishing the relationships between coupling constants and conformation. Complete chemical shift assignments and spin–spin coupling constants are reported for the title compounds by using high-field (500 MHz) 1H NMR techniques (e.g., 2D homonuclear and heteronuclear experiments, difference NOE enhancements, and computational spin simulations). In addition to the more familiar two- and three-bond couplings, the spectra of 1 and 2 also contain a number of long-range (four- and five- bond) couplings, which provide a stringent test of Barfield's theoretical treatment of four-bond couplings.


1976 ◽  
Vol 54 (5) ◽  
pp. 833-839 ◽  
Author(s):  
Roderick E. Wasylishen

Nitrogen–carbon spin–spin coupling constants in aniline-15N and some of its derivatives have been measured using 13C Fourier transform nmr spectroscopy. Observed values of 1J(15N,13C) in these aniline derivatives are dependent on the nature of the substituent as well as the solvent. Observed values of 1J(15N,13C) in the amino fragment of a number of amine derivatives are linearly related to the corresponding 1J(15N,H) values in these compounds. The 1J(15N,13C) values in these compounds also appear to be related to the N(s)—C(s) bond order. Comparison of observed 1J(15N,13C) values in a number of compounds with those calculated using INDO–MO theory indicate that 1J(15N,13C) in aniline and its derivatives is negative, that is, 1K(N,C) is positive. Observed and calculated 15N–13C spin–spin coupling constants over two and three bonds are also presented.


1983 ◽  
Vol 61 (12) ◽  
pp. 2785-2789 ◽  
Author(s):  
Ted Schaefer ◽  
Reino Laatikainen

On the basis of the observed five-bond spin–spin coupling constants between the α protons and the meta ring protons in the 2,6-difluoro derivatives of toluene, ethylbenzene, and cumene, it is argued that [Formula: see text] in toluene can be written as A[Formula: see text]. A and B are of the same sign and of very similar magnitude. In consequence, [Formula: see text] cannot be used to measure the conformational preference of the methyl group. However, [Formula: see text] and [Formula: see text] in α-substituted toluene derivatives will be useful in conformational studies. [Formula: see text] in toluene derivatives varies between 0.30 and 0.46 Hz and some patterns in its ring substituent dependence can be gleaned from some fifty precise values.


1969 ◽  
Vol 47 (19) ◽  
pp. 3529-3533 ◽  
Author(s):  
C. L. Bell ◽  
S. S. Danyluk ◽  
T. Schaefer

The spin–spin coupling constant between the aldehydic proton and the proton in the para position, JpH,HCO is negative in 2,6-dinitrobenzaldehyde. JpH,CHO is also very likely negative in 2,6-dichlorobenzaldehyde. It is suggested that steric interaction with the ortho substituents forces the aldehyde group out of a coplanar conformation and leads to an interaction of the aldehydic C–H bond with the π system of the ring. Tentative values of θ, a measure of the deviation from coplanarity, are given.


1988 ◽  
Vol 66 (8) ◽  
pp. 1821-1823 ◽  
Author(s):  
Glenn H. Penner ◽  
William P. Power ◽  
Roderick E. Wasylishen

The anisotropy of the indirect 31P,199Hg spin–spin coupling constant, ΔJ, in solid [HgP(o-tolyl)3(NO3)2]2 is obtained from an analysis of the 31P nuclear magnetic resonance powder pattern. The value of ΔJ, 5170 ± 250 Hz, is large and indicates that mechanisms other than the Fermi contact mechanism are important for this spin–spin coupling. The powder spectrum also indicates that the absolute sign of 1J(31P,199Hg) is positive.


Sign in / Sign up

Export Citation Format

Share Document