An 1H NMR conformational analysis of 3-phenylpentane in solution

1993 ◽  
Vol 71 (4) ◽  
pp. 520-525 ◽  
Author(s):  
Ted Schaefer ◽  
Lina B.-L. Lee

Some 30 proton chemical shifts and proton–proton coupling constants are reported for a 4.7 mol% solution of 3-phenylpentane in a CS2/C6D12/TMS solvent mixture at 300 K. The long-range coupling constant over six formal bonds between the methine and para protons is used to deduce an apparent twofold barrier of 15.0 ± 0.3 kJ/mol to rotation about the Csp2—Csp3 bond, at least twice as large as that for isopropylbenzene in solution. AM1 computations agree with experiment in finding the conformation of lowest energy as that in which the methine C—H bond is situated in the phenyl plane, but predict a barrier height of only 13.9 kJ/mol. The vicinal coupling constants are consistent with a fractional population, 0.38(2), of the TT conformer, that in which all the carbon atoms of the alkyl chain lie in a plane. A doubly degenerate conformer, TG+(G−T), in which one methyl group is twisted away from the phenyl substituent, then has a fractional population of 0.62(2). The assumption that only these three conformers are present is tested with the signs and magnitudes of the four different coupling constants over four bonds. These coupling constants are consistent with the absence of significant proportions of the other six all-staggered conformers. These six are characterized by a close approach of the methyl groups (1,5 interactions) or by proximity of the methyl and phenyl moieties.

1974 ◽  
Vol 29 (12) ◽  
pp. 1902-1906 ◽  
Author(s):  
Jukka Jokisaari

The 100 MHz spectra of the phenyl protons in 2-(3-chlorophenyl) oxetane and 2-(2-chlorophenyl) oxetane have been analysed. The 60 MHz PMR chemical shifts and proton-proton coupling constants have been studied in the temperature range from -20 C to +80 °C. The chemical shifts were sensitive to temperature, while the coupling constants were not, except the long range 5Jm coupling constant between the methine proton and the meta positioned phenyl proton in 2-(2-chlorophenyl) oxetane.


1984 ◽  
Vol 37 (2) ◽  
pp. 311 ◽  
Author(s):  
IB Cook ◽  
S Pengprecha ◽  
B Ternai

An equation which relates the ortho carbon-13 substituent chemical shift α-SCS in aza-aromatics to the ortho proton-proton coupling constant 3J(HH) in the corresponding carbocyclic compound is derived from experimental data. The implications for N-N bond fixation in diaza-aromatics are discussed. When the equation is applied to 2-substituted pyridines, an electronegativity parameter must be included to explain the results.


1977 ◽  
Vol 32 (11) ◽  
pp. 1296-1303 ◽  
Author(s):  
W. Runge

A comparison between calculated and observed values demonstrates that “ansätze” derived from an algebraic model in connection with appropriate boundary conditions are able to account for a quantitative description of the proton chemical shifts of allenes.Correlations of the proton chemical shifts with other NMR data, such as 13C-chemical shifts and one-bond carbon-proton coupling constants, reveal some insigths into the nature of the 1H substituent chemical shifts of alienes.


1970 ◽  
Vol 48 (13) ◽  
pp. 2134-2138 ◽  
Author(s):  
Y. L. Chow ◽  
S. Black ◽  
J. E. Blier ◽  
M. M. Tracey

The geminal coupling constants between the non-equivalent benzylic protons of a series of para- and meta-substituted N-benzyl-2-methylpiperidines were shown to be proportional to the Hammett σ constants of the substituents with ρ −1.38 in carbon tetrachloride, −1.21 in benzene, and nearly 0 in 1 N DCl solutions. The ρ values were compared with those of other series and were discussed in terms of the possible conformations involved. The chemical shifts of the benzylic protons of the piperidine derivatives did not give a good correlation with the Hammett σ constants in these solvents.


RSC Advances ◽  
2015 ◽  
Vol 5 (46) ◽  
pp. 36858-36864 ◽  
Author(s):  
Yang Li

The 13C NMR spectra and vicinal proton–proton coupling constants of two tricyclic macrolactone natural products were analyzed using computational methods, which resulted in their structural revisions.


1996 ◽  
Vol 51 (9) ◽  
pp. 1042-1044
Author(s):  
Zoran Marković ◽  
Stanimir Konstantinović ◽  
Ivan Gutman

Abstract A modification of the Karplus equation, containing four mutually independent structural terms and five adjustable parameters, is put forward. The new structural factor, introduced into this modification is sin (θ1 + θ2)/2. The new equation reproduces experimental NMR vicinal coupling constants of norbornenes with a standard deviation of about 0.45 Hz.


1962 ◽  
Vol 40 (8) ◽  
pp. 1483-1489 ◽  
Author(s):  
Robert R. Fraser

It has been shown that the geminal and vicinal coupling constants are of opposite sign in α,β-diphenylpropionic acid and its methyl ester. The significance of the results is discussed.


1977 ◽  
Vol 55 (14) ◽  
pp. 2642-2648 ◽  
Author(s):  
Roger N. Renaud ◽  
John W. Bovenkamp ◽  
Robert R. Fraser ◽  
Raj Capoor

The effect of substituents at the 3-position in a series of N-methyl 5,6-dihydro-7H,12H-di-benzo[c,f]azocines on the geminal coupling constants of the C-12 methylene protons has been determined. The slope of the Hammett plot of 2J vs. σ has been found to be +0.20. The orientation of the methylene protons with respect to the π orbitals of the benzene ring bearing the substituent is such that no hyperconjugative effect should be present. The value of +0.20 is in contrast to a previously measured slope of −1.9 for compounds having a geometry ideal for hyperconjugative effects and substantiates the predictions of theoretical MO calculations. As a result, the reliability of this conformational dependence of ρ for use in conformational analysis has been strengthened.A comparison of the data for the azocines with those in the literature indicates the difference between the minimum and maximum effects of a phenyl substituent on a geminal coupling constant of an attached methylene group is 5.5 Hz.


1981 ◽  
Vol 46 (11) ◽  
pp. 2924-2934
Author(s):  
Seán Cawley ◽  
Jan Schraml ◽  
Petr Svoboda ◽  
Robert Ponec ◽  
Václav Chvalovský

1H NMR spectra and electric dipole moments of a series of propene derivatives, (CH3)3-nCln.CCH=CH2 (n = 0-3), were measured and the spectra analyzed. Discrepancies in literature data on compounds with n = 0 and 3 are probably due to systematic spectrometer errors. Vinylic proton chemical shifts are found to vary linearly with n in the direction expected on the electronegativity ground (the variations with n occurs in the order HA > HB ≥ HC). Calculations show that even with the extreme reported values of C-C and C-Cl bond magnetic anisotropies, the shift variations with n cannot be accounted for by magnetic anisotropy effects of a freely rotating (CH3)3-nClnC group. Similar calculations rule out electric field effects as the dominant factor. On the other hand, the electron charge distribution, as obtained from CNDO/2 calculations, including d-orbitals and employing Del Bene-Jaffé parametrization, is linearly related to the vinylic proton shifts. This finding supports the earlier interpretation of NMR spectra of vinylsilanes in terms of back-bonding. The vinyl proton-proton coupling constants decrease with increasing n, the changes being larger in the constants which couple proton A (cis) to the other two.


1969 ◽  
Vol 47 (21) ◽  
pp. 4005-4010 ◽  
Author(s):  
S. S. Danyluk ◽  
C. L. Bell ◽  
T. Schaefer

The long-range proton–proton coupling constants between the ring protons and the aldehydic proton are reported for a series of para-substituted benzaldehyde derivatives. It was found that JoH,CHO < 0 and JmH,CHO > 0. Furthermore, JoH,CHO increases in magnitude as the electron donating power of the sub-stituent increases. A similar trend is observed forJmH,CHO but the ratio of the increase to the magnitude of JmH,CHO is much less than for JoH,CHO. A good correlation is obtained between JoH,CHO and the sub-stituent parameters of Swain and Lupton.The coupling constant data are discussed in terms of σ and π coupling mechanisms and it is concluded that σ electron mechanisms are dominant for both JoH,CHO and JmH,CHO.


Sign in / Sign up

Export Citation Format

Share Document