Amiodarone induces stress responses and calcium flux mediated by the cell wall in Saccharomyces cerevisiae

2009 ◽  
Vol 55 (3) ◽  
pp. 288-303 ◽  
Author(s):  
William E. Courchesne ◽  
Meral Tunc ◽  
Sha Liao

We used a proteomic approach to study effects of amiodarone on cells of the yeast Saccharomyces cerevisiae. Amiodarone has been shown to have antifungal activity in vitro and causes a massive increase in cytoplasmic calcium levels ([Ca2+]cyt). Proteomic analysis of cells exposed to amiodarone show that this drug elicits stress responses and points to involvement of proteins associated with the cell wall. We tested several of those proteins for involvement in the Ca2+ flux. In particular, the amiodarone-induced Ca2+ flux was decreased in bgl2Δ cells, which have altered levels of β-glucan and chitin. The involvement of the cell wall in the Ca2+ flux induced by amiodarone treatment was tested by addition of yeast cell-wall components. While mannan inhibited the rise in [Ca2+]cyt, β-glucan potentiated the Ca2+ flux by 4.5-fold, providing evidence that the cell wall is directly involved in controlling this Ca2+ flux. This conclusion is corroborated by the inhibition of the Ca2+ flux by calcofluor, which is known to bind to cell-wall chitin and inhibit cell growth. Zymolyase treatment altered the kinetics of amiodarone-induced calcium flux and uncoupled the inhibitory effect of calcofluor. These effects demonstrate that the cell-wall β-glucan regulates calcium flux elicited by amiodarone.

1996 ◽  
Vol 16 (1) ◽  
pp. 442-456 ◽  
Author(s):  
G Müller ◽  
E Gross ◽  
S Wied ◽  
W Bandlow

Transfer of spheroplasts from the yeast Saccharomyces cerevisiae to glucose leads to the activation of an endogenous (glycosyl)-phosphatidylinositol-specific phospholipase C ([G]PI-PLC), which cleaves the anchor of at least one glycosyl-phosphatidylinositol (GPI)-anchored protein, the cyclic AMP (cAMP)-binding ectoprotein Gce1p (G. Müller and W. Bandlow, J. Cell Biol. 122:325-336, 1993). Analyses of the turnover of two constituents of the anchor, myo-inositol and ethanolamine, relative to the protein label as well as separation of the two differently processed versions of Gce1p by isoelectric focusing in spheroplasts demonstrate the glucose-induced conversion of amphiphilic Gce1p first into a lipolytically cleaved hydrophilic intermediate, which is then processed into another hydrophilic version lacking both myo-inositol and ethanolamine. When incubated with unlabeled spheroplasts, the lipolytically cleaved intermediate prepared in vitro is converted into the version lacking all anchor constituents, whereby the anchor glycan is apparently removed as a whole. The secondary cleavage ensues independently of the carbon source, attributing the key role in glucose-induced anchor processing to the endogenous (G)PI-PLC. The secondary processing of the lipolytically cleaved intermediate of Gce1p at the plasma membrane is correlated with the emergence of a covalently linked high-molecular-weight form of a cAMP-binding protein at the cell wall. This protein lacks anchor components, and its protein moiety appears to be identical with double-processed Gce1p detectable at the plasma membrane in spheroplasts. The data suggest that glucose-induced double processing of GPI anchors represents part of a mechanism of regulated cell wall expression of proteins in yeast cells.


2005 ◽  
Vol 4 (4) ◽  
pp. 832-835 ◽  
Author(s):  
Terri S. Rice ◽  
Min Ding ◽  
David S. Pederson ◽  
Nicholas H. Heintz

ABSTRACT Here we show that the Saccharomyces cerevisiae tRNAHis guanylyltransferase Thg1p interacts with the origin recognition complex in vivo and in vitro and that overexpression of hemagglutinin-Thg1p selectively impedes growth of orc2-1(Ts) cells at the permissive temperature. Studies with conditional mutants indicate that Thg1p couples nuclear division and migration to cell budding and cytokinesis in yeast.


1996 ◽  
Vol 16 (6) ◽  
pp. 2719-2727 ◽  
Author(s):  
S Silve ◽  
P Leplatois ◽  
A Josse ◽  
P H Dupuy ◽  
C Lanau ◽  
...  

SR 31747 is a novel immunosuppressant agent that arrests cell proliferation in the yeast Saccharomyces cerevisiae, SR 31747-treated cells accumulate the same aberrant sterols as those found in a mutant impaired in delta 8- delta 7-sterol isomerase. Sterol isomerase activity is also inhibited by SR 31747 in in vitro assays. Overexpression of the sterol isomerase-encoding gene, ERG2, confers enhanced SR resistance. Cells growing anaerobically on ergosterol-containing medium are not sensitive to SR. Disruption of the sterol isomerase-encoding gene is lethal in cells growing in the absence of exogenous ergosterol, except in SR-resistant mutants lacking either the SUR4 or the FEN1 gene product. The results suggest that sterol isomerase is the target of SR 31747 and that both the SUR4 and FEN1 gene products are required to mediate the proliferation arrest induced by ergosterol depletion.


1970 ◽  
Vol 1 (1) ◽  
pp. 51-55
Author(s):  
Louis H. Muschel ◽  
Linda J. Larsen

This study was performed to determine the mechanism whereby hypertonic sucrose inhibits the immune bactericidal reaction. Other investigators had postulated that the initial attack of complement (C) on the cell wall was followed with lysozyme-containing whole serum by an enzymatic reaction upon the peptidoglycan substrate resulting in cell death. In the absence of serum lysozyme, secondary lethal changes might occur from damage to the cell's inner membrane as a result of osmotic forces in the presence of a defective cell wall. Hypertonic sucrose giving rise to plasmolysis and protection of the inner membrane was presumed to differentially inhibit the immune response mediated by lysozyme-free serum. The experimental results observed in this investigation have indicated, however, that the inhibitory effect of sucrose upon the bactericidal reaction may be explained simply by its anticomplementary effect and not by any effect on the bacterial cell. This view was supported by the following observations: (i) the comparability of the inhibitory effect of sucrose upon the immune hemolytic and bactericidal reactions, (ii) the comparable percentage loss in bactericidal activity of whole serum and lysozyme-free serum resulting from hypertonic sucrose, (iii) bactericidal antibody titrations were relatively unaffected and C titrations markedly inhibited by sucrose, (iv) the inhibitory effect of sucrose on the bactericidal reaction was unaffected by prior growth of the organism in the presence of sucrose, (v) the kinetics of the bactericidal reactivity of lysozyme-free serum in hypertonic sucrose, compared with whole serum, did not reveal a prolonged lag phase with lysozyme-free serum, but simply diminished reactivity at all times. These observations are compatible with the view that the C attack upon the outer surface of gram-negative bacteria, which plays a part in the cell's permeability control, may account for cell death. In this regard, the immune bactericidal reaction is quite comparable to the lysis of red cells or nucleated cells by C despite the lack of overt lysis in bacteria, probably because of their underlying supporting structures.


1993 ◽  
Vol 13 (8) ◽  
pp. 5010-5019 ◽  
Author(s):  
J Heitman ◽  
A Koller ◽  
J Kunz ◽  
R Henriquez ◽  
A Schmidt ◽  
...  

The immunosuppressants cyclosporin A, FK506, and rapamycin inhibit growth of unicellular eukaryotic microorganisms and also block activation of T lymphocytes from multicellular eukaryotes. In vitro, these compounds bind and inhibit two different types of peptidyl-prolyl cis-trans isomerases. Cyclosporin A binds cyclophilins, whereas FK506 and rapamycin bind FK506-binding proteins (FKBPs). Cyclophilins and FKBPs are ubiquitous, abundant, and targeted to multiple cellular compartments, and they may fold proteins in vivo. Previously, a 12-kDa cytoplasmic FKBP was shown to be only one of at least two FK506-sensitive targets in the yeast Saccharomyces cerevisiae. We find that a second FK506-sensitive target is required for amino acid import. Amino acid-auxotrophic yeast strains (trp1 his4 leu2) are FK506 sensitive, whereas prototrophic strains (TRP1 his4 leu2, trp1 HIS4 leu2, and trp1 his4 LEU2) are FK506 resistant. Amino acids added exogenously to the growth medium mitigate FK506 toxicity. FK506 induces GCN4 expression, which is normally induced by amino acid starvation. FK506 inhibits transport of tryptophan, histidine, and leucine into yeast cells. Lastly, several genes encoding proteins involved in amino acid import or biosynthesis confer FK506 resistance. These findings demonstrate that FK506 inhibits amino acid import in yeast cells, most likely by inhibiting amino acid transporters. Amino acid transporters are integral membrane proteins which import extracellular amino acids and constitute a protein family sharing 30 to 35% identity, including eight invariant prolines. Thus, the second FK506-sensitive target in yeast cells may be a proline isomerase that plays a role in folding amino acid transporters during transit through the secretory pathway.


1996 ◽  
Vol 16 (4) ◽  
pp. 1805-1812 ◽  
Author(s):  
J Zhu ◽  
R H Schiestl

Chromosome aberrations may cause cancer and many heritable diseases. Topoisomerase I has been suspected of causing chromosome aberrations by mediating illegitimate recombination. The effects of deletion and of overexpression of the topoisomerase I gene on illegitimate recombination in the yeast Saccharomyces cerevisiae have been studied. Yeast transformations were carried out with DNA fragments that did not have any homology to the genomic DNA. The frequency of illegitimate integration was 6- to 12-fold increased in a strain overexpressing topoisomerase I compared with that in isogenic control strains. Hot spot sequences [(G/C)(A/T)T] for illegitimate integration target sites accounted for the majority of the additional events after overexpression of topoisomerase I. These hot spot sequences correspond to sequences previously identified in vitro as topoisomerase I preferred cleavage sequences in other organisms. Furthermore, such hot spot sequences were found in 44% of the integration events present in the TOP1 wild-type strain and at a significantly lower frequency in the top1delta strain. Our results provide in vivo evidence that a general eukaryotic topoisomerase I enzyme nicks DNA and ligates nonhomologous ends, leading to illegitimate recombination.


1995 ◽  
Vol 15 (11) ◽  
pp. 5983-5990 ◽  
Author(s):  
Z Guo ◽  
F Sherman

It was previously shown that three distinct but interdependent elements are required for 3' end formation of mRNA in the yeast Saccharomyces cerevisiae: (i) the efficiency element TATATA and related sequences, which function by enhancing the efficiency of positioning elements; (ii) positioning elements, such as TTAAGAAC and AAGAA, which position the poly(A) site; and (iii) the actual site of polyadenylation. In this study, we have shown that several A-rich sequences, including the vertebrate poly(A) signal AATAAA, are also positioning elements. Saturated mutagenesis revealed that optimum sequences of the positioning element were AATAAA and AAAAAA and that this element can tolerate various extents of replacements. However, the GATAAA sequence was completely ineffective. The major cleavage sites determined in vitro corresponded to the major poly(A) sites observed in vivo. Our findings support the assumption that some components of the basic polyadenylation machinery could have been conserved among yeasts, plants, and mammals, although 3' end formation in yeasts is clearly distinct from that of higher eukaryotes.


1987 ◽  
Vol 7 (4) ◽  
pp. 1371-1377 ◽  
Author(s):  
T Toda ◽  
S Cameron ◽  
P Sass ◽  
M Zoller ◽  
J D Scott ◽  
...  

We have cloned a gene (BCY1) from the yeast Saccharomyces cerevisiae that encodes a regulatory subunit of the cyclic AMP-dependent protein kinase. The encoded protein has a structural organization similar to that of the RI and RII regulatory subunits of the mammalian cyclic AMP-dependent protein kinase. Strains of S. cerevisiae with disrupted BCY1 genes do not display a cyclic AMP-dependent protein kinase in vitro, fail to grow on many carbon sources, and are exquisitely sensitive to heat shock and starvation.


Sign in / Sign up

Export Citation Format

Share Document