Modelling the temporal variation in the seed production of North American trees

2004 ◽  
Vol 34 (1) ◽  
pp. 65-75 ◽  
Author(s):  
D F Greene ◽  
E A Johnson

Many aspects of temporal variation in tree seed production (e.g., the proability distribution, periodicity, uni modality) are poorly understood. In this paper, we used 32 annual seed production records from 22 species to show that there are no discernible endogenous cycles, and there is a modest (but seldom significant) tendency for a high seed production year to be followed by an unusually low production year. Finally, we found that all of the records conformed to a single lognormal probability distribution, although our ability to discriminate among species, given short and extremely variable records, is admittedly very limited. We used the lognormal to develop the distribution of the sums of local seed production events (summed across 4 years) as an aid in predicting postharvest or postfire tree regeneration success. Our conclusion is that reliable (defined as 90% of the time) adequate stocking at the edge of an area source requires that the species of interest must comprise a very large fraction of the total basal area per area. Indeed, if the species constitutes less than about 50% of the source, neither burns nor even very narrow strip cuts will be reliably stocked.

2021 ◽  
Author(s):  
Yihan Cai ◽  
Takahiro Nishimura ◽  
Hideyuki Ida ◽  
Mitsuru Hirota

<p> Soil respiration (Rs) is the second largest carbon flux between the atmosphere and terrestrial ecosystem. Because of the large proportion, even small change in Rs would considerably impact the global carbon cycle. Therefore, it is important to accurately estimate Rs by taking its spatial and temporal variation into consideration. While the temporal variation of Rs and its controlling factors have been well-described, large unexplainable part still has been remained in the spatial variation of Rs especially in the forest ecosystems with complex structures. The objective of this study is to fill the knowledge gap about spatial variation of Rs and its controlling factors in a typical mature beech forest in Japan. Hypotheses of this study were, 1) Rs would show large spatial variation in the mature beech forest, 2) the spatial variation of Rs was mainly influenced by soil water content (SWC) and soil temperature (ST), 3) the two key factors were determined by the forest structures. This study was conducted in a 1- ha permanent study plot in the mature beech forest with significant gap-mosaic structures. To examine these hypotheses, Rs, SWC, ST and parameters related to forest structure, i.e. sum of basal area, diameter at breast height, number of trees, number of species within a radius of 5 m from the Rs measurement points, and canopy openness were measured at 121 points in different season between 2012 to 2013. In this study, all the measurements of Rs were conducted by using alkali-absorption technique.</p><p> Coefficient of variation of Rs was between 25 - 28 % which was similar to that of SWC in all the measurements. The spatial variation of Rs was relatively higher in July, August and September than that in June and October. There was no significant relationship in the spatial variation between Rs and ST in all the measurements, meanwhile, Rs was well explained by SWC in measurements conducted in August, September and October. Multiple linear regression analysis indicated that canopy openness and sum of basal area showed significant positive and negative correlation with SWC, respectively. And canopy openness explained SWC much more than sum of basal area did. This result suggested that SWC, the key factor determined the spatial variation of Rs, cannot be only explained by stems distribution and their characteristics, but also canopy architecture in the forest ecosystem.</p>


Forests ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 536 ◽  
Author(s):  
Kristen Pelz ◽  
Charles Rhoades ◽  
Robert Hubbard ◽  
Frederick Smith

The severity of lodgepole pine mortality from mountain pine beetle outbreaks varies with host tree diameter, density, and other structural characteristics, influencing subcanopy conditions and tree regeneration. We measured density and leader growth of shade-intolerant lodgepole pine, shade-tolerant Engelmann spruce, and very shade-tolerant subalpine fir regeneration beneath stands that experienced moderate and high overstory lodgepole pine mortality (average 40% and 85% of total basal area) a decade earlier. Lodgepole comprised >90% of the overstory basal area and mature spruce and fir were present in both mortality levels, though live basal area and disturbance history differed. Post-beetle outbreak recruitment was high in both mortality levels, but there were more lodgepole in high than moderate mortality plots (1140 stems ha−1 vs. 60 stems ha−1) and more subalpine fir in moderate than high mortality plots (4690 stems ha−1 vs. 2870 stems ha−1). Pine advance regeneration, established prior to outbreak, was more dense in high mortality than moderate mortality sites (930 stems ha−1 vs. 310 stems ha−1), but the trend was generally the opposite for the other conifers. Lodgepole recruitment increased and subalpine fir decreased with greater forest floor light availability. All species grew faster in high mortality areas than their counterparts in moderate mortality areas. However, in high mortality areas pine grew faster than the more shade tolerant species, and in moderate mortality areas spruce and fir grew faster than pine. These species-specific responses to the degree of overstory mortality will influence future stand composition and rate of forest recovery after mountain pine beetle outbreaks.


1993 ◽  
Vol 17 (1) ◽  
pp. 10-15 ◽  
Author(s):  
William D. Boyer

Abstract Well-stocked mature longleaf pine (Pinus palustris Mill.) stands were cut to five residual basal areas in 1957, namely 9, 18, 27, 36, and 45 ft² per ac, to observe the effect of stand density on seed production and seedling establishment. Seedlings, mainly from the 1955 or 1961seed crops, were established in treated stands. All pines on net 0.9 ac plots were remeasured in 1991 to determine the effect of residual pine density on development of the regeneration. Even the lightest residual overstory converted the structure of 29- to 35- yr-old ingrowth into the reverse-Jdiameter class distribution characteristic of uneven-aged stands. Four or six residual trees, now comprising 7 to 10 ft² basal area (ba)/ac, reduced ingrowth basal area to about half that of same-aged stands released from overstory competition. Merchantable volume of ingrowth under theselow residual densities averaged 40% of that in released stands. Mean annual per ac volume increment of ingrowth averaged 21 to 22 ft³ under the 9 ft² density but did not exceed 7 ft³ under any residual density above this. The potential impact of significant growth reductionsshould be taken into account when considering uneven-aged management methods for longleaf pine. South. J. Appl. For. 17(1):10-15.


Forests ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 888
Author(s):  
Allison K. Rossman ◽  
Jonathan D. Bakker ◽  
David W. Peterson ◽  
Charles B. Halpern

The long-term effectiveness of dry-forest fuels treatments (restoration thinning and prescribed burning) depends, in part, on the pace at which trees regenerate and recruit into the overstory. Knowledge of the factors that shape post-treatment regeneration and growth is limited by the short timeframes and simple disturbance histories of past research. Here, we present results of a 15-year fuels-reduction experiment in central Washington, including responses to planned and unplanned disturbances. We explore the changing patterns of Douglas-fir regeneration in 72 permanent plots (0.1 ha) varying in overstory abundance (a function of density and basal area) and disturbance history—the latter including thinning, prescribed burning, and/or wildfire. Plots were measured before treatment (2000/2001), soon afterwards (2004/2005), and more than a decade later (2015). Thinning combined with burning enhanced sapling recruitment (ingrowth) into the overstory, although rates of ingrowth were consistently low and greatly exceeded by mortality. Relationships between seedling frequency (proportion of quadrats within a plot) and overstory abundance shifted from weakly negative before treatment to positive after thinning, to neutral in the longer term. However, these relationships were overshadowed by more recent, higher-severity prescribed fire and wildfire that stimulated seedling establishment while killing advanced regeneration and overstory trees. Our results highlight the dependence of regeneration responses on the history of, and time since, fuels treatment and subsequent disturbance. Managers must be aware of this spatial and temporal complexity and plan for future disturbances that are inevitable but unpredictable in timing and severity.


1999 ◽  
Vol 29 (10) ◽  
pp. 1557-1573 ◽  
Author(s):  
Robert J Pabst ◽  
Thomas A Spies

We characterized the structure and composition of unmanaged riparian forests in three river basins in Oregon's coastal mountains. Our objective was to evaluate stand attributes at three spatial scales: streamside (site), drainage network (stream order), and basin (subregion). Data on basal area, species composition, snag density, canopy cover, and tree regeneration were collected along transects at 124 sites. Conifer basal area increased with distance from stream, a trend similar among subregions, and was highest at sites along first-order streams. Hardwood basal area was relatively constant with distance from stream and was proportionally higher at sites along second- and third-order streams than at sites along first-order streams. Conifer and hardwood tree regeneration occurred infrequently and varied by topographic position, stream order, and subregion. Conifer regeneration was associated with basal area of shade-tolerant conifers and appeared to be limited by shrub competition. The unmanaged forests we studied were characterized by a patchy mosaic of structure and composition. Hardwoods and shrubs were major components of the near-stream environment in these forests, whereas dominance of conifers was limited to hillslopes. It appears that fine-scale patterns associated with proximity to the stream are influenced by coarser scale factors such as valley-floor width and climate.


2015 ◽  
Vol 104 (1) ◽  
pp. 44-54 ◽  
Author(s):  
Chia-Hao Chang-Yang ◽  
I-Fang Sun ◽  
Cheng-Han Tsai ◽  
Chia-Ling Lu ◽  
Chang-Fu Hsieh

2013 ◽  
Vol 44 (6) ◽  
pp. 1013-1021 ◽  
Author(s):  
Mohammad H. Hussein

Soil erodibility reflects the soil effect on the detachment process by rainfall and runoff; an evaluation of this parameter for single storm events was carried out using natural runoff plot data collected for two rainfall seasons in northern Iraq. The region is characterized by a semiarid Mediterranean-type climate with normal rainfall intensity below 20 mm/h and dominant sheet erosion on agricultural land. The plots were three 30 × 3 m and three 10 × 3 m, in fallow, situated on a 6% uniform slope; the soil at the site has a silty clay loam texture and belongs to the Calciorthid suborder. Sheet erosion rate was assumed linearly proportional to the storm power and the sheet flow power; a steady-state turbulent and kinematic sheet flow was also assumed. The results indicated a dominant detachment by rainfall with a substantial variability in storm by storm calculated sheet erodibility. The two-parameter lognormal probability distribution fitted the obtained sheet erodibility values reasonably well. Using this probability distribution, a representative sheet erodibility value of 0.056 × 10−3kg/J was obtained for use at the experimental site.


1976 ◽  
Vol 13 (5) ◽  
pp. 704-707 ◽  
Author(s):  
G. Ranalli

The distribution of lengths of regional strike-slip faults in continental crust is adequately described by the lognormal probability distribution. It is therefore suggested that the faulting process can be modelled as a random process obeying the law of proportionate effect (Kolmogorov type).


1991 ◽  
Vol 13 (1) ◽  
pp. 36 ◽  
Author(s):  
DM Orr ◽  
CJ Evenson

The basal area, yield and plant populations of Astrebla spp. were monitored under grazing and exclosure in Astrebla grasslands between 1975 and 1986. This study was undertaken to develop an understanding of how Astrebla spp. respond to grazing, particularly in relation to the high variability of rainfall. Basal area and yield of Astrebla spp. varied widely between years in response to summer rainfall, with few differences between exclosure and grazing. The failure of summer rainfall resulted in increased utilization of Astrebla spp. but this effect was partially offset in some years by the growth of forb species following winter rainfall. Grazing stimulated the recruitment of Astrebla spp. seedlings by increasing the density of inflorescences which, in turn, increased seed production. Survival of seedling cohorts depended on adequate summer rainfall and grazing tended to enhance cohort survival. There was a greater plant flux under grazing than under exclosure. It was concluded that rainfall is the major factor influencing the biomass and plant population dynamics of Astrebla spp. and that grazing up to about 30% utilization is not detrimental to Astrebla spp.


Forests ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 271 ◽  
Author(s):  
Susan Jones-Held ◽  
Michael Held ◽  
Joe Winstead ◽  
William Bryant

Wind disturbance is an important factor that can affect the development of the forests of the Central Hardwood Region of the United States. However, there have been few long-term studies of the recovery of these systems following wind damage. Long-term studies of protected forest systems, such as Dinsmore Woods in Northern Kentucky, within the fragmented forest of this region are valuable as they provide a resource to document and understand the effect of both abiotic and biotic challenges to forest systems. This study is a 40-year analysis of both overstory and understory changes in the forest system at Dinsmore Woods as the result of damage caused by severe winds in the spring of 1974. The forest was surveyed before and immediately following the windstorm and then at 10-year intervals. Although the windstorm had an immediate effect on the forest, the pattern of damage was complex. The forest canopy (diameter at breast height (DBH) ≥ 30 cm) experienced an irregular pattern of damage while in the subcanopy (DBH ≤ 30 cm) there was a 25% reduction in total basal area. However, the major effects of the windstorm were delayed and subsequently have altered forest recovery. Ten years following the disturbance declines were seen in total density and basal area in the canopy and subcanopy of the forest as a consequence of windstorm damage. In the past 20 years the total basal area of the canopy has increased and exceeds the pre-disturbance total basal area. In contrast, the subcanopy total basal area continued to decline 20 years post-disturbance and has not recovered. Further openings in the canopy and subcanopy due to the delayed windstorm effects helped to establish a dense understory of native shrubs and sugar maple which have affected tree regeneration and is reflected in the continual decline in species diversity in the subcanopy and sapling strata over the 40-year period.


Sign in / Sign up

Export Citation Format

Share Document