Soil compaction associated with cut-to-length and whole-tree harvesting of a coniferous forest

2009 ◽  
Vol 39 (5) ◽  
pp. 976-989 ◽  
Author(s):  
Sang-Kyun Han ◽  
Han-Sup Han ◽  
Deborah S. Page-Dumroese ◽  
Leonard R. Johnson

The degree and extent of soil compaction, which may reduce productivity of forest soils, is believed to vary by the type of harvesting system, and a field-based study was conducted to compare soil compaction from cut-to-length (CTL) and whole-tree (WT) harvesting operations. The CTL harvesting system used less area to transport logs to the landings than did the WT harvesting system (19%–20% vs. 24%–25%). At high soil moisture levels (25%–30%), both CTL and WT harvestings caused a significant increase of soil resistance to penetration (SRP) and bulk density (BD) in the track compared with the undisturbed area (p < 0.05). In the center of trails, however, only WT harvesting resulted in a significant increase of SRP and BD compared with the undisturbed area (p < 0.05). Slash covered 69% of the forwarding trail area in the CTL harvesting units; 37% was covered by heavy slash (40 kg·m–2) while 32% was covered by light slash (7.3 kg·m–2). Heavy slash was more effective in reducing soil compaction in the CTL units (p < 0.05). Prediction models were developed that can be used to estimate percent increases in SRP and BD over undisturbed areas for both CTL and WT harvesting systems.

2016 ◽  
Vol 40 (3) ◽  
pp. 519-527 ◽  
Author(s):  
Kathleen Lourenço Fernandes ◽  
Adriana Aparecida Ribon ◽  
João Tavares Filho ◽  
Gustavo Dias Custódio ◽  
Leonardo Rodrigues Barros

ABSTRACT The soil resistance to penetration study helps in understanding the state of soil compaction, indicating how best to manage it. The present study aimed to verify the influence of time management in modeling curves of resistance to penetration in Oxisol under different uses and management of pastures and woodland in field conditions, using the stepwise procedure. The study was conducted in the Cerrado region. Five (5) systems of uses and management of pastures and native woodland were evaluated: ILPF: crop-livestock-forest integration; ILP: crop-livestock integration; P: Area in the extensive grazing system; MN: native woodland; PIQ: rotated picket. The experiments were assessed for the years 2012/13 and 2013/14. To obtain the models, an analysis with four independent variables was performed: Gravimetric moisture (X1), bulk density (X2), total porosity (X3) and organic matter (X4) and the dependent variable, soil resistance to penetration (Y). The multiple regression analysis by STEPWISE with F of 0.15 was used. The equation that best estimated the resistance to penetration was RP = 14.68 to 0.26 for Native Woodland in layers from 0.20 - 0.40 m with R2 indices of 0.97 in year 1. For year 2, the equation that estimated the resistance to penetration was obtained in the PIQ treatment, PR = - 15.94 - 0.29 PT + 15.87 DS + 0.05 MO. with R2 of 0.94.


2005 ◽  
Vol 48 (6) ◽  
pp. 863-871 ◽  
Author(s):  
Amauri Nelson Beutler ◽  
José Frederico Centurion ◽  
Alvaro Pires da Silva

The objective of this study was determine the resistance to penetration (PR), least limiting water range (LLWR) and critical bulk density (Db-crit) for soybean yield in a medium-textured oxisol (Haplustox). The treatments represented the soil compaction by passing a tractor over the site 0, 1, 2, 4, and 6 times, with 4 replications in a randomized experimental design. Samples were collected from 0.02-0.05, 0.07-0.10 and 0.15-0.18 m depths. Soybean (Glycine max cv. Embrapa 48) was sowed in December 2002. Plant height, number of pods, aerial dry matter, weight of 100 seeds, and the yield in 3.6 m² plots were recorded. Soybean yield started reduction at the PR of 0.85 MPa and Db of 1.48 Mg m-3. The LLWR was limited in highest part by water content at field capacity (0.01 MPa tension) and in lowest part by water content at PRcrit, achieved the Db-crit to yield at 1.48 Mg m-3.


Author(s):  
Fábio H. R. Baio ◽  
Igor M. Scarpin ◽  
Cassiano G. Roque ◽  
Danilo C. Neves

ABSTRACT The soil physical quality is one of the most determinant factors for the development of any crop. This study aimed to assess the sample representativeness in soil resistance to penetration mappings taken in rows and interrows of the cotton crop, under two soil moisture conditions. Thirty control points were sampled in a cotton field of 91 ha. Soil resistance to penetration and soil moisture were measured at these georeferenced points. Regardless of soil moisture, the sampling position of soil resistance to penetration is indifferent (row, interrow, or in both positions) when the analysed depth is greater than 0.20 m in the cotton crop. The decrease of soil moisture causes the increment of soil resistance to penetration, regardless of the sampling position.


2021 ◽  
Vol 13 (9) ◽  
pp. 4863
Author(s):  
Farzam Tavankar ◽  
Mehrdad Nikooy ◽  
Francesco Latterini ◽  
Rachele Venanzi ◽  
Leonardo Bianchini ◽  
...  

Background: Poplar tree plantations for wood production are part of a worldwide growing trend, especially in moist soil sites. Harvesting operations in moist sites such as poplar plantations require more study for detailed and increased knowledge on environmental and economic aspects and issues. Methods: In this study, the effects of soil moisture content (dry vs. moist) on productivity, cost, and emissions of greenhouse gases (GHG) caused by operations of different harvesting systems (chainsaw-skidder and harvester-forwarder) were evaluated in three poplar plantations (two in Italy and one in Iran). Results: The productivity (m3 h−1) of both systems in the dry sites were significantly higher (20% to 30%) than those in the moist sites. Production costs (€ m−3) and GHG emissions (g m−3) of both systems in the dry sites were also significantly lower than those in the moist sites. The productivity of the harvester-forwarder system was about four times higher, and its production cost was 25% to 30% lower than that of the chainsaw-skidder system, but the calculated GHG emissions by harvester-forwarder system was 50–60% higher than by the chainsaw-skidder system. Conclusions: Logging operations are to be avoided where there are conditions of high soil moisture content (>20%). The result will be higher cost-effectiveness and a reduction in the emission of pollutants.


Irriga ◽  
2008 ◽  
Vol 13 (2) ◽  
pp. 272-287 ◽  
Author(s):  
Ona Da Silva Freddi ◽  
José Frederico Centurion ◽  
Ricardo Garcia Aratani ◽  
Amauri Nelson Beutler

COMPACTAÇÃO DO SOLO E INTERVALO HÍDRICO ÓTIMO NO CRESCIMENTO DA PARTE AÉREA E PRODUTIVIDADE DA CULTURA DO MILHO  Onã da Silva Freddi; José Frederico Centurion; Ricardo Garcia Aratani; Amauri Nelson BeutlerDepartamento de Solos e Adubos, Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterináiras, Jaboticabal, SP, [email protected]  1 RESUMO O objetivo do trabalho foi avaliar a compactação do solo proporcionada pelo tráfego de tratores sobre o intervalo hídrico ótimo (IHO) e o crescimento e produtividade do milho em um Latossolo Vermelhode textura argilosa. Os tratamentos foram constituídos por cinco intensidades de compactação e quatro repetições em delineamento inteiramente casualizado. Foram coletadas amostras indeformadas de solo nas camadas de 0,02–0,05, 0,08–0,11, 0,15–0,18 e 0,22-0,25 mpara determinação da macroporosidade, microporosidade, porosidade total, densidade do solo, resistência à penetração e o IHO. Os parâmetros da cultura avaliados foram à altura das plantas e inserção da primeira espiga, o diâmetro do colmo, o número de espigas por planta, a massa seca das plantas e de 1000 grãos e a produtividade. A compactação do solo restringiu todos os parâmetros da cultura avaliados com exceção apenas para o número de espigas e a massa de 1000 grãos. O IHO foi reduzido pela resistência do solo à penetração mesmo no tratamento com solo preparado com densidade média de 1,12 Mg m-3. Apenas o tratamento com quatro passadas do trator de 11 Mg apresentou densidade do solo acima da densidade crítica determinada no IHO, que foi de 1,37 Mg m-3, no qual a produtividade de milho foi significativamente menor. UNITERMOS: Zea mays, resistência do solo à penetração, densidade do solo  FREDDI, O. S.; CENTURION, J. F.; ARATANI, R. G; BEUTLER, A. N. SOIL COMPACTION AND LEAST LIMITING WATER RANGE ON CORN SHOOT GROWTH AND SEED PRODUCTIVITY  2 ABSTRACT The aim of this work was to evaluate the effect of soil compaction caused by tractor wheel traffic on the limiting water range (LLWR), shoot growth and levels of compaction and four replications in a completely randomized experimental design. Soil samples with preserved structure were collected in the layers: 0.02-0.05; 0.08-0.11; 0.15-0.18 and 0.22-0.25m to determine macroporosity, microporosity, total porosity, bulk density, resistance to penetration and LLWR. The evaluated corn parameters were: plant and first spike height, steam diameter, number of spikes per plant, plant dry matter, dry matter of 1000 seeds and seed productivity. The soil compaction restricted all corn parameters except the number of spikes per plant and dry matter of 1000 seeds. The LLWR was reduced by the soil resistance to penetration, even in the tilled soil with bulk density of 1.12 Mg m-3. Only the treatment with 11 Mg tractor, repeated four times on the area, demonstrated bulk density above critical bulk density in the LLWR that was 1.37 Mg m-3, where the seed productivity was significantly smaller. KEY WORDS: Zea mays, soil resistance to penetration, bulk density


2021 ◽  
Vol 64 (1) ◽  
pp. 99-110
Author(s):  
Neşe Gülci ◽  
Kıvanç Yüksel ◽  
Sercan Gülci ◽  
Hasan Serin ◽  
Ebru Bilici ◽  
...  

In fully mechanized forest harvesting systems, tree felling activities are mostly performed by using harvesters or feller-bunchers. In some regions of Turkey, where terrain conditions and stand characteristics are suitable, fully mechanized harvesting systems have been recently practiced by some of the logging contractors as private forest industry demands for large amounts of forest products throughout the year. Thus, performances of these newly practiced harvesting systems should be carefully analyzed in order to implement productive and cost-effective mechanized harvesting systems. In this study, productivity of whole-tree harvesting using a feller-buncher was investigated based on stand parameters including tree height, DBH, and volume. The DBH of the felled trees were divided into four classes (i.e. very small: 16-19 cm, small: 20-23 cm, medium: 24-27 cm and large: 28-31 cm) to investigate the effects of various DBH class on the time consumption of cutting stage and productivity of the feller-buncher. To estimate productivity of feller-buncher in harvesting operation, multiple linear and polynomial regressions were also developed and discussed after the interpretation of diagnostic plots. The results indicated that the average productivity of the feller-buncher was 74.96 m3 /h which was closely related with tree height (r = 0.63), DBH (r = 0.67), and volume (r = 0.67). The average moving time was the most time-consuming stage (60%), followed by cutting (29%) and bunching stages (11%). It was found that DBH classes caused statistically significant (p < 0.05) effects on the time spent on cutting stage and productivity of the feller-buncher. The cutting time and productivity increased from very small to large diameter classes, while bunching time increased from very small to small diameter and then medium diameter to large diameter classes. Polynomial regression had a positive impact on the performance of the estimation model of manually field-measured data based on the error parameters.


2011 ◽  
Vol 31 (6) ◽  
pp. 1104-1114 ◽  
Author(s):  
Vinicius de V Ros ◽  
Cristiano M. A. de Souza ◽  
Antonio C. T Vitorino ◽  
Leidy Z. L Rafull

If inappropriately conducted, management and sowing practices may compromise the environment and the profitability of the agricultural activity. The aim of this study was to analyze the furrow opener mechanisms action and the level of load applied to soil firming mechanism in no-till, on the Oxisol resistance to penetration during soybean sowing, under three soil moistures. The experiment was arranged in split-split plot design, in which the plots were composed by three soil moistures (23.8; 25.5 and 27.5% b.s.), two furrow opener mechanisms sub-plots (double disks and furrow plough) and the split-split plot of three levels of load applied to soil firming mechanism (12.2; 18.5 and 24.1 kPa), according to randomized blocks design, with three replications. The soil moisture provided different resistance behavior to penetration with the depth, on the seedbed, independently of the furrow opener and the level of load applied to soil firming mechanism. The furrow plough use provided less soil resistance to penetration when compared to the double disk furrow opener, on the seedbed, independently of the soil moisture and the level of load applied to soil firming mechanism. The pressure applied by soil firming mechanism of 18.5 kPa provided the lower resistance to penetration, when the furrow plough was used. The soil resistance to penetration was less on the sowing line than on between rows, with 20 cm deep.


1988 ◽  
Vol 5 (1) ◽  
pp. 30-34 ◽  
Author(s):  
C. Wayne Martin

Abstract The extent and magnitude of soil disturbance caused by mechanized, whole-tree harvesting was studied on a central hardwood site in Connecticut, a northern hardwood site in New Hampshire, and a spruce-fir site in Maine. Twenty-nine percent of the soil surface at the central hardwood site was undisturbed, but only 8% on the other sites was undisturbed. Mineral soil was exposed on 8 to 18% of soil surfaces after cutting, with wheel ruts more than 30 cm deep occupying less than 3%. Mechanized whole-tree harvesting causes a greater proportion of soil disturbance than other harvesting systems and will affect advanced and subsequent regeneration to a greater degree. If deep rutting occurs on wet soils, equipment should be moved until drier conditions prevail; winter logging and conversion from wheel to track vehicles may be options for reducing impact. Skid trails should follow the land contours. Travel routes should be predetermined to reduce the surface area being compacted. Practices that expose infertile mineral soil should be minimized. North. J. Appl. For. 5:30-34, March 1988.


2019 ◽  
Vol 65 (6) ◽  
pp. 767-775 ◽  
Author(s):  
Joseph L Conrad ◽  
Joseph Dahlen

AbstractLogging businesses in the US South have not adopted cut-to-length harvesting systems. Adding dangle head processors on the landing of whole-tree harvesting systems may allow southern loggers to achieve some of the advantages of cut-to-length systems (i.e., precise length and diameter measurements) while maintaining high productivity and low costs per ton characteristic of current whole-tree systems. We conducted a designed study of conventional (i.e., feller-buncher, grapple skidder, loader) and processor (i.e., feller-buncher, grapple skidder, processor, loader) systems. Four harvest sites were split, with half of each site harvested by a conventional system and the other half by a processor system. Harvesting productivity was estimated using time-and-motion studies, and costs were estimated using the machine rate method. Cut-and-load costs averaged US$13.57 and US$14.67 ton–1 on the processor and conventional harvests, respectively (P > .10). Cost per ton was elevated on several conventional harvest tracts because of long skidding distances, indicating harvest planning is more important than harvesting system in determining harvesting costs. Processing and loading costs were US$1.70 ton–1 higher on processor harvests, which, combined with restrictive mill quotas being more problematic for processor crews, suggests loggers will require a logging rate premium in order to invest in processors.


2002 ◽  
Vol 48 (7) ◽  
pp. 655-674 ◽  
Author(s):  
Paige E Axelrood ◽  
Monica L Chow ◽  
Christopher C Radomski ◽  
Joseph M McDermott ◽  
Julian Davies

Bacteria from forest soils were characterized by DNA sequence analysis of cloned 16S rRNA gene fragments (16S clones). Surface organic matter and mineral soil samples from a British Columbia Ministry of Forests Long-Term Soil Productivity (LTSP) installation were collected during winter and summer from two disturbance treatments: whole-tree harvesting with no soil compaction (plot N) and whole-tree harvesting plus complete surface organic matter removal with heavy soil compaction (plot S). Phylogenetic analyses revealed that 87% of 580 16S clones were classified as Proteobacteria, Actinobacteria, Acidobacterium, Verrucomicrobia, Bacillus/Clostridium group, Cytophaga-Flexibacter-Bacteroides group, green nonsulfur bacteria, Planctomyces, and candidate divisions TM6 and OP10. Seventy-five 16S clones could not be classified into known bacterial divisions, and five 16S clones were related to chloroplast DNA. Members of Proteobacteria represented 46% of the clone library. A higher proportion of 16S clones affiliated with γ-Proteobacteria were from plot N compared with plot S. 16S rRNA gene fragments amplified with Pseudomonas-specific primers and cloned (Ps clones) were examined from mineral-soil samples from plots N and S from three LTSP installations. A significantly greater proportion of sequenced Ps clones from plot N contained Pseudomonas 16S rRNA gene fragments compared with Ps clones from plot S.Key words: bacterial diversity, 16S rRNA gene, forest soil.


Sign in / Sign up

Export Citation Format

Share Document