Fire history from three species on a central Appalachian ridgetop

2011 ◽  
Vol 41 (10) ◽  
pp. 2031-2039 ◽  
Author(s):  
Amy E. Hessl ◽  
Tom Saladyga ◽  
Thomas Schuler ◽  
Peter Clark ◽  
Joshua Wixom

The impact of settlement era fires on Appalachian forests was substantial, but whether these fires affected the extent of fire-adapted ridgetop plant communities is poorly understood. Here we present fire history and stand structure of an Appalachian ridgetop (Pike Knob, West Virginia) based on fire scars from three species (Pinus pungens Lamb., Pinus resinosa Soland., and Quercus rubra L.) and stand structure from two species (P. pungens and P. resinosa). Our research objectives are to determine (i) the degree to which the fire frequency on Pike Knob was affected by European American settlement (~1780–1900) and (ii) how the history of fire on Pike Knob shaped the current age structure of P. resinosa and P. pungens. All three species documented fire activity beginning in the mid- to late 1800s and continuing into the middle of the 20th century, when pasture lands were most active. The majority of P. pungens and P. resinosa established during or shortly after the ~85-year period of fires (1868–1953), suggesting a strong influence of past land use on current forest composition. Ridgetop pine communities have been resilient to both the absence of fire and frequent fire, indicating that pine communities will also be resilient to modern fire management, whether fire is excluded or re-introduced.

2013 ◽  
Vol 22 (2) ◽  
pp. 207 ◽  
Author(s):  
Vyacheslav I. Kharuk ◽  
Mariya L. Dvinskaya ◽  
K. Jon Ranson

A fire history of northern larch forests was studied. These larch forests are found near the northern limit of their range at ~71°N, where fires are predominantly caused by lightning strikes rather than human activity. Fire-return intervals (FRIs) were calculated based on fire scars and dates of tree natality. Tree natality was used as an approximation of the date of the last fire. The average FRI was found to be 295±57 years, which is the longest reported for larch-dominated stands. Prior studies reported 80–90-year FRIs at 64°N and ~200 years near the latitude of the Arctic Circle. Comparing data from fires that occurred in 1700–1849 (end of the Little Ice Age, LIA) and 1850–1999 (post-LIA warming) indicates approximately twice as many fires occurred during the latter period. This agrees with the hypothesis that observed climatic warming will result in an increase in fire frequency. Our results also indicate that fires that did not leave visible fire scars on the tree stem may be identified based on the date of growth release revealed from dendrochronology.


Biotropica ◽  
2010 ◽  
Vol 42 (4) ◽  
pp. 405-409 ◽  
Author(s):  
Jos Barlow ◽  
Juliana M. Silveira ◽  
Mark A. Cochrane

Forests ◽  
2017 ◽  
Vol 8 (4) ◽  
pp. 120 ◽  
Author(s):  
Serge Payette ◽  
Vanessa Pilon ◽  
Pierre-Luc Couillard ◽  
Jason Laflamme

2007 ◽  
Vol 85 (3) ◽  
pp. 263-272 ◽  
Author(s):  
Claude Lavoie ◽  
Stéphanie Pellerin

In this study, we reconstructed the long-term fire history of a set of ombrotrophic peatlands (bogs) located in a temperate region of southern Quebec (Bas-Saint-Laurent). Past and recent fire-free intervals (time interval between two consecutive fires) were compared using macrofossil analyses. During most of the Holocene epoch, fires were relatively rare events in bogs of the Bas-Saint-Laurent region. The fire-free intervals were approximately ten times longer (all sites considered) before the beginning of agricultural activities in the region (1800 AD) than after. This strongly suggests an anthropogenic influence on the fire regime prevailing in the bogs over the last 200 years. However, the shortening of the fire-free intervals was mainly the result of the ignition of one or two fires in almost every site during a relatively short period (200 years), rather than a higher fire frequency in each of the bogs. In some cases, fires had an influence on the vegetation structure of bogs, but it is more likely that a combination of several disturbances (fire, drainage, and drier than average summers) favoured the establishment of dense stands of pine and spruce, a forest expansion phenomenon that is now widespread in temperate bogs.


2015 ◽  
Vol 24 (1) ◽  
pp. 59 ◽  
Author(s):  
Emma E. Burgess ◽  
Patrick Moss ◽  
Murray Haseler ◽  
Martine Maron

The post-fire response of vegetation reflects not only a single fire event but is the result of cumulative effects of previous fires in the landscape. For effective ecological fire management there is a need to better understand the relationship between different fire regimes and vegetation structure. The study investigated how different fire regimes affect stand structure and composition in subtropical eucalypt woodlands of central Queensland. We found that fire history category (i.e. specific combinations of time since fire, fire frequency and season of last burn) strongly influenced richness and abundance of species categorised as mid-storey trees and those individuals currently in the mid-level strata. Time since fire and fire frequency appeared to have the strongest influence. A longer time since fire (>4 years since last burn), combined with infrequent fires (<2 fires in 12 year period) appeared to promote a dense mid-storey with the opposite conditions (<4 years since last burn; >2 fires in 12 year period) promoting more-open woodlands. Consideration of these combined fire regime attributes will allow fire managers to plan for a particular range of fire-mediated patches to maintain the desired diversity of vegetation structures.


2001 ◽  
Vol 10 (1) ◽  
pp. 65 ◽  
Author(s):  
Sandra Bravo ◽  
Carlos Kunst ◽  
Ana Gimenez ◽  
Graciela Moglia

Our objective was to assess the current fire regime of a 600 ha savanna dominated by the grass species Elionorus muticus Spreng., located in Santiago del Estero Province, north-western Chaco region, Argentina. The degree of tolerance of some native woody species to fire, the fire mean fire frequency (FF), and Weibull median probability (WMPI) were evaluated. Sampling sites were located in the ecotone between the savanna and the surrounding forests. A database was developed from fire scars found in cross sections of native tree and shrub species, cut at different heights above ground; that covered the recent 70 years of fire history (1925–1996). Results indicate that the savanna has a mean FF of 0.179 fires year–1 and an FI = 3 years. The mean height of fire scars found in trees and shrubs which indicate medium to high fireline intensities with flame lengths larger than 1 m are frequent in the savanna. Native species have different degrees of tolerance: Aspidosperma quebracho blanco (tree) and Schinopsis quebracho colorado (tree) are more tolerant to fire than Acacia furcatispina (shrub) and A. aroma (shrub). Bark thickness of the tree species (1–1.5 cm in mature individuals) allows them to withstand the frequent, high intensity fires of the savanna.


2006 ◽  
Vol 36 (4) ◽  
pp. 855-867 ◽  
Author(s):  
Megan L Van Horne ◽  
Peter Z Fulé

Fire scars have been used to understand the historical role of fire in ponderosa pine (Pinus ponderosa Dougl. ex P. & C. Laws.) ecosystems, but sampling methods and interpretation of results have been criticized for being statistically invalid and biased and for leading to exaggerated estimates of fire frequency. We compared "targeted" sampling, random sampling, and grid-based sampling to a census of all 1479 fire-scarred trees in a 1 km2 study site in northern Arizona. Of these trees, 1246 were sufficiently intact to collect cross-sections; of these, 648 had fire scars that could be cross-dated to the year of occurrence in the 200-year analysis period. Given a sufficient sample size (approximately n ≥ 50), we concluded that all tested sampling methods resulted in accurate estimates of the census fire frequency, with mean fire intervals within 1 year of the census mean. We also assessed three analytical techniques: (1) fire intervals from individual trees, (2) the interval between the tree origin and the first scar, and (3) proportional filtering. "Bracketing" fire regime statistics to account for purported uncertainty associated with targeted sampling was not useful. Quantifying differences in sampling approaches cannot resolve all the limitations of fire-scar methods, but does strengthen interpretation of these data.


2013 ◽  
Vol 43 (7) ◽  
pp. 669-675 ◽  
Author(s):  
Aura Piha ◽  
Timo Kuuluvainen ◽  
Henrik Lindberg ◽  
Ilkka Vanha-Majamaa

Determining forest fire history is commonly based on fire scar dating with dendrochronological methods. We used an experimental setup to investigate the impacts of low-intensity prescribed fire on fire scar formation 8 years after fire in 12 young managed Scots pine (Pinus sylvestris L.) stands. Five stands were between 30 and 35 years old and seven were 45 years old at the time of burning. A total of 217 fire scars were recorded in 142 trees. The number of separate scars per tree originating from a single fire ranged from 1 to 6, with 67% of the trees having just one scar. The proportion of fire-scarred trees out of all trees per plot ranged from 0% to 30%, averaging 16.5% in young stands and 2.8% in older stands. Four of the 12 burned plots did not have any trees with fire scars, and these were all in the older age group. This means that in the older stands, in only three of seven plots (43%) did the fire leave scars from which fire can potentially be detected and dated afterwards. Our results suggest that fire scar dating in Scots pine dominated forests may underestimate fire frequency, area, and the importance of historically common low-intensity surface fires in dendrochronological reconstructions of past fire histories.


2015 ◽  
Vol 84 (3) ◽  
pp. 348-357 ◽  
Author(s):  
Alicia White ◽  
Christy Briles ◽  
Cathy Whitlock

The Cascade Range of southwestern Oregon contains some of North America's most diverse forests, but the ecological history of this area is poorly understood. A 7900-yr-long pollen and charcoal record was examined to better understand past changes in vegetation and fire activity in relation to large-scale climate variability. From 7900 to 3500 cal yr BP, the dominance of xerophytic species and the frequent fires are consistent with a climate that was warmer and drier than at present. The period from 3500 cal yr BP to present experienced an abundance of mesophytic taxa and reduced fire frequency, suggesting cooler and wetter conditions. The regional history of Abies indicates that it was most widespread during the late-glacial period; its range contracted during the early Holocene thermal maximum, and it steadily expanded during the middle and late Holocene. In contrast, Pseudotsuga was restricted in range during the glacial period, became abundant at low-elevation sites in the Coast and northern Cascade ranges during the early Holocene, and was more prevalent in southern mid-elevation sites as the climate became cooler and wetter in the late Holocene. The sensitivity of these species to past climate change suggests that biogeographic responses to future conditions will be highly variable in this region.


1994 ◽  
Vol 24 (1) ◽  
pp. 21-31 ◽  
Author(s):  
Peter M. Brown ◽  
Thomas W. Swetnam

Cross sections from coast redwood trees (Sequoiasempervirens (D.Don.)Endl.) in and near Redwood National Park were dendrochronologically cross-dated and used to develop a fire history from 1714 to 1985. A master chronology for the study area was first developed from old-growth trees and provided dating control for fire-scarred samples. Redwood offers a challenge for dendrochronology owing to partially absent rings (ring wedging) and uniform ring widths (complacency). Cross dating was successful in portions of 12 of 24 fire-scarred trees. Fire events were dated by noting the position of fire scars and other fire-associated ring structures (resin ducts, double latewood, growth releases, and ring separations) in the cross-dated ring series. Using only dates of fire scars, the mean fire interval (MFI) was 9.9 years from the first recorded fire in 1714 to the last in 1962. The MFI was 8.0 years for the best represented (greatest sample depth) presettlement period from 1714 to 1881. Using dates for all fire-associated ring features, the MFI from 1714 to 1962 was 7.0 years and from 1714 to 1881 was 6.0 years. Use of all fire-associated ring characteristics is argued to be a more complete representation of past fire frequency due to possible under-representation of fire-scar records from stump-top samples. Based upon scar positions within annual rings, fires occurred predominately late in the growing season or after growth ceased for the year. The mean fire intervals determined are shorter than those reported in all except one other fire history study from coast redwood and suggest that fire frequency in redwood may have been underestimated in many past studies.


Sign in / Sign up

Export Citation Format

Share Document