Above- and be Bow-ground biomass of precompetitive red pine in northern Michigan

1995 ◽  
Vol 25 (7) ◽  
pp. 1064-1069 ◽  
Author(s):  
David D. Reed ◽  
Glenn D. Mroz ◽  
Hal O. Liechty ◽  
Elizabeth A. Jones ◽  
Peter J. Cattelino ◽  
...  

In 1984, red pine (Pinusresinosa Ait.) plantations were established at three sites in northern Michigan. From 1985 through 1992, 3083 individual trees from these stands were destructively sampled to determine aboveground biomass. The root systems were excavated on a subset of these trees (975 individuals). There were no significant differences in the relationships between either above- or below-ground biomass and groundline diameter and tree height across the range of biomass (3–6720 g for aboveground biomass and 1–319 g for belowground biomass), basal diameter (0.3–10.1 cm), or height (10–417 cm) of the sampled trees. There were also no significant differences in these relationships among the three sites. Relative height growth (the ratio of total height increment in a year and the total height at the beginning of the growing season) was found to have a very well defined maximum that was a function of total height at the beginning of the growing season. This maximum relative growth rate was used to develop a new height growth index that can be used to identify precompetitive red pine that are approaching their potential height growth in field situations.

1989 ◽  
Vol 19 (6) ◽  
pp. 690-699 ◽  
Author(s):  
Antoine Kremer ◽  
Li-An Xu

Pinuspinaster Ait. seedlings from 15 families were grown under conditions designed to accelerate growth for 21 weeks in their first season. Fifteen height growth components were assessed and compared with total height, height growth pattern, and height growth components of trees of the same families grown for 6 years on a sandy moorland site. Growth-accelerating conditions induced the formation of typical adult-like apical buds. Principal components analysis on the weekly height increments during the first growing season showed that 76% of the overall between-family variation could be attributed to the first two components. Families that were extremely poly cyclic and monocyclic in the field were separated on the graph of the two principal components. Among the 15 growth components assessed during the first growing season, 3 showed a significant correlation with total height at 6 years of age: mean stem unit length, asymptotic total height value of the Richards growth function, and the first principal component, i.e., height growth rates during the early stages of development. Mean stem unit length was the component that showed the highest stability between the first and the fifth growing seasons. Between 30 and 72% of the variation of total height (38–64% of the variation of secondary shoot length) at age 6 could be predicted by multiple regression, with a combination of two or three components assessed in the first season.


1999 ◽  
Vol 29 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Raynald Paquin ◽  
Hank A Margolis ◽  
René Doucet ◽  
Marie R Coyea

Growth and physiology of layers versus naturally established seedlings of boreal black spruce (Picea mariana (Mill.) BSP) were compared 15 years after a cutover in Quebec. During the first 8 years, height growth of seedlings was greater than that of layers, averaging 10.4 and 7.0 cm/year, respectively. For the last 5 years, annual height growth of layers and seedlings did not differ (25 cm/year; p > 0.05). Over the entire 15-year period, total height growth of seedlings (251 cm) was greater than that of layers (220 cm), although total height did not differ (p > 0.05) over the last 6 years. During the 15th growing season, there were no differences (p > 0.05) for predawn shoot water potential, stomatal conductance, net photosynthesis, intercellular to ambient CO2 ratio, water use efficiency, and hydraulic conductance between layers and seedlings. For diurnal shoot water potential, seedlings showed slightly less stress than layers on two of the four sampling dates. Thus, in the first few years following the cutover, the slower growth observed for layers indicated that they had a longer acclimation period following the cutover. Afterwards, similar height growth, total height, and physiological characteristics of the two regeneration types indicated that layers can perform as well as naturally established seedlings.


Author(s):  
Mamadou Laminou Mal Amadou ◽  
Halilou Ahmadou ◽  
Ahmadou Ibrahim ◽  
Tchindebe Alexandre ◽  
Massai Tchima Jacob ◽  
...  

Little information on allometric relationships for estimating stand biomass in the savannah of Cameroon was available. Allometric relationships for estimating stand biomass were investigated in the sudano-guinea savannah of Ngaoundere, Cameroon. A total of 90 individual woody from sixteen (16) contrasting plant species belonging shrubs and trees were harvested in Dang savannah across a range of diameter classes, from 3 to 35 cm. Basal diameter (D), total height (H) and tree density were determined and considered as predictor variables, while total above-ground biomass, stem, branch and leaf biomass were the output variables of the allometric models. Among many models tested, the best ones were chosen according to the coefficient of determination adjusted (R2adj), the residual standard error (RSE) and the Akaike Information Criteria. The main results showed that the integration of tree height and density with basal diameter improved in the degree of fitness of the allometric equations. The fit allometric stand biomass model for leaf, branch, stem and above ground biomass were the following forms: Ln(LB) = -5.08 + 2.75*Ln(D) – 0.30*Ln(D2Hρ); Ln(BB) = -7.81 + 1.29*Ln(D2H) – 0.39*Ln(ρ); Ln(SB) = -5.08 + 2.40*Ln(D) +0.50*Ln(H) and Ln(TB) = -5.07 + 3.21*Ln(D) – 0.12*Ln(D2Hρ) respectively. It is concluded that the use of tree height and density in the allometric equation can be improved for these species, as far as the present study area is concerned. Therefore, for estimating the biomass of shrubs and small trees, the use of basal diameter as an independent variable in the allometric equation with a power equation would be recommended in the Sudano-guinea savannahs of Ngaoundere, Cameroon. The paper describes details of shrub biomass allometry, which is important in carbon stock and savannah management for the environmental protection.


1963 ◽  
Vol 95 (5) ◽  
pp. 522-524 ◽  
Author(s):  
Robert L. Talerico ◽  
Herman J. Heikkenen ◽  
William E. Miller

AbstractHeight growth and number of side branches developing the first growth season after chemical suppression of the European pine shoot moth, Rhyacionia buoliana (Schiff.), were measured on 40 treated and nontreated plots of red pine, Pinus resinosa Ait., in Michigan. Some plots had been treated during the summer-treatment period and some during the spring-treatment period. Summer treatment increased the height growth and number of side branches over no treatment; the degree of chemical suppression was useful in estimating tree growth during the following growing season. In contrast, spring suppression had no effect on height growth and number of side branches.


1993 ◽  
Vol 23 (5) ◽  
pp. 810-815 ◽  
Author(s):  
Yun Wu ◽  
Margaret R. Gale ◽  
Peter J. Cattelino ◽  
Dana L. Richter ◽  
Johann N. Bruhn

To assess temporal dynamics of ectomycorrhizae (ECM) on red pine (Pinusresinosa Ait.) seedlings, numbers of ECM per gram of dry root were compared with temporal changes in seedling height, basal diameter, above- and below-ground (coarse root) biomass, shootroot ratio, and leaf water potentials. Bare-root red pine seedlings (3-0 stock) planted on three sites in upper Michigan in June of 1984 were destructively sampled on a monthly basis (May–October) from 1985 to 1989. Three morphological types (brown, black, and white) of ECM were observed and counted. Average numbers of total and brown-type ECM per gram of dry root increased rapidly during the 1985 growing season, decreased from August 1985 to 1988, and appeared to increase slightly in 1989. Shoot weight, root weight, total height, basal diameter, and shoot:root ratio of red pine seedlings steadily increased. Temporal changes in numbers of total and brown-type ECM were significantly correlated with all seedling characteristics (p < 0.001). The highest correlation (negative) occurred between field age of red pine seedlings and numbers of both total and brown-type ECM per gram dry root; high negative correlations also existed between basal diameter, total height of red pine seedlings, and numbers of total and brown-type ECM per gram dry root. Decreased average leaf water potential was observed to relate to increases in numbers of total and brown-type ECM.


2017 ◽  
Vol 23 (2) ◽  
Author(s):  
AFSHAN ANJUM BABA ◽  
SYED NASEEM UL-ZAFAR GEELANI ◽  
ISHRAT SALEEM ◽  
MOHIT HUSAIN ◽  
PERVEZ AHMAD KHAN ◽  
...  

The plant biomass for protected areas was maximum in summer (1221.56 g/m2) and minimum in winter (290.62 g/m2) as against grazed areas having maximum value 590.81 g/m2 in autumn and minimum 183.75 g/m2 in winter. Study revealed that at Protected site (Kanidajan) the above ground biomass ranged was from a minimum (1.11 t ha-1) in the spring season to a maximum (4.58 t ha-1) in the summer season while at Grazed site (Yousmarag), the aboveground biomass varied from a minimum (0.54 t ha-1) in the spring season to a maximum of 1.48 t ha-1 in summer seasonandat Seed sown site (Badipora), the lowest value of aboveground biomass obtained was 4.46 t ha-1 in spring while as the highest (7.98 t ha-1) was obtained in summer.


2021 ◽  
Vol 13 (8) ◽  
pp. 4167
Author(s):  
David Kombi Kaviriri ◽  
Huan-Zhen Liu ◽  
Xi-Yang Zhao

In order to determine suitable traits for selecting high-wood-yield Korean pine materials, eleven morphological characteristics (tree height, basal diameter, diameter at breast height, diameter at 3 meter height, stem straightness degree, crown breadth, crown height, branch angle, branch number per node, bark thickness, and stem volume) were investigated in a 38-year-old Korean pine clonal trial at Naozhi orchard. A statistical approach combining variance and regression analysis was used to extract appropriate traits for selecting elite clones. Results of variance analysis showed significant difference in variance sources in most of the traits, except for the stem straightness degree, which had a p-value of 0.94. Moderate to high coefficients of variation and clonal repeatability ranged from 10.73% to 35.45% and from 0.06% to 0.78%, respectively. Strong significant correlations on the phenotypic and genotypic levels were observed between the straightness traits and tree volume, but crown breadth was weakly correlated to the volume. Four principal components retaining up to 80% of the total variation were extracted, and stem volume, basal diameter, diameter at breast height, diameter at 3 meter height, tree height, and crown height displayed high correlation to these components (r ranged from 0.76 to 0.98). Based on the Type III sum of squares, tree height, diameter at breast height, and branch number showed significant information to explain the clonal variability based on stem volume. Using the extracted characteristics as the selection index, six clones (PK105, PK59, PK104, PK36, PK28, and K101) displayed the highest Qi values, with a selection rate of 5% corresponding to the genetic gain of 42.96% in stem volume. This study provides beneficial information for the selection of multiple traits for genetically improved genotypes of Korean pine.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Gerong Wang ◽  
Yue Sun ◽  
Mo Zhou ◽  
Naiqian Guan ◽  
Yuwen Wang ◽  
...  

Abstract Background Herbs are an important part of the forest ecosystem, and their diversity and biomass can reflect the restoration of vegetation after forest thinning disturbances. Based on the near-mature secondary coniferous and broad-leaved mixed forest in Jilin Province Forestry Experimental Zone, this study analyzed seasonal changes of species diversity and biomass of the understory herb layer after different intensities of thinning. Results The results showed that although the composition of herbaceous species and the ranking of importance values were affected by thinning intensity, they were mainly determined by seasonal changes. Across the entire growing season, the species with the highest importance values in thinning treatments included Carex pilosa, Aegopodium alpestre, Meehania urticifolia, and Filipendula palmata, which dominated the herb layer of the coniferous and broad-leaved mixed forest. The number of species, Margalef index, Shannon-Wiener index and Simpson index all had their highest values in May, and gradually decreased with months. Pielou index was roughly inverted “N” throughout the growing season. Thinning did not increase the species diversity. Thinning can promote the total biomass, above- and below-ground biomass. The number of plants per unit area and coverage were related to the total biomass, above- and below-ground biomass. The average height had a significantly positive correlation with herb biomass in May but not in July. However, it exerted a significantly negative correlation with herb biomass in September. The biomass in the same month increased with increasing thinning intensity. Total herb biomass, above- and below-ground biomass showed positive correlations with Shannon-Winner index, Simpson index and Pielou evenness index in May. Conclusions Thinning mainly changed the light environment in the forest, which would improve the plant diversity and biomass of herb layer in a short time. And different thinning intensity had different effects on the diversity of understory herb layer. The findings provide theoretical basis and reference for reasonable thinning and tending in coniferous and broad-leaved mixed forests.


2003 ◽  
Vol 79 (3) ◽  
pp. 602-612 ◽  
Author(s):  
Luigi E Morgantini ◽  
John L Kansas

Weyerhaeuser Company Ltd. is developing harvest strategies that will maintain appropriate levels of late to very late seral stages ("old growth") in its Drayton Valley Forest Management Area. This management area encompasses 490 570 ha in the Foothills and Rocky Mountain Natural Regions of west-central Alberta. In planning for future forest landscapes, Weyerhaeuser intends to maintain a range of age structures consistent with the ecological processes characteristic of each natural region and subregion. The absence of a discrete point separating mature forest from old growth means that the age at which a stand is currently identified as "old growth" and subject to special management practices is arbitrary. In a research study initiated in the summer of 2000, we seek to understand the differences in structure and composition between forests of various ages and topographic site conditions (elevation, aspect, and slope angle). Using 95 sampling plots in a 123-km2 study area in the Upper Foothills and Subalpine Natural Subregions, we quantified vegetation structure and composition for stands ranging in age from 70 to 300 years. Variables measured and analysed included live-tree height and diameter, snag density, diameter and decay class, downed woody material volume, diameter and decay class, vascular plant species richness, sapling and regeneration density, and duff depth. An old-growth index was developed for each sampled stand that took into account multiple attributes. Preliminary results indicate that specific attributes (snag basal area and density, decay stage and density of downed woody material, variation in live-tree age, and variation in live-tree height and age) separate a younger forest from a more mature one and hence may describe "old-growth" conditions. The age of onset of these old-growth attributes is variable but appears to occur between 160 and 180 years. Key factors other than stand age that contribute to or modify the development of old-growth attributes (as measured by the old-growth index) are elevation and moisture regime (as modified by site position). Further investigation is required to more accurately assess the effect of site factors on old-growth attributes. These results are now used by Weyerhaeuser to address retention of late seral stages in long-term forest planning. Key words: old growth, mature forests, old growth protection, forest management, Alberta, Weyerhaeuser, Rocky Mountains foothills


Sign in / Sign up

Export Citation Format

Share Document