KINETIC STUDIES ON THE HYDROLYSIS OF BENZOYLCHOLINE BY HUMAN SERUM CHOLINESTERASE

1956 ◽  
Vol 34 (1) ◽  
pp. 637-653 ◽  
Author(s):  
W. Kalow ◽  
K. Genest ◽  
N. Staron

Benzoylcholine stands out from other known substrates of serum cholinesterase because of its high apparent affinity for this enzyme combined with a rapid rate of destruction. The reaction kinetics of the hydrolysis of benzoylcholine can be studied by ultraviolet spectrophotometry, since the absorbance decreases in proportion to the concentration of substrate. Kinetic data obtained by measuring initial reaction rates, and by analyzing continuous hydrolysis curves, are the same within the range of experimental error. The enzymatic data are compatible with the assumption that in the presence of high substrate concentrations a complex consisting of esterase and two substrate molecules is formed. This complex is hydrolyzed more slowly than the complex containing one molecule of substrate which is formed at low concentrations of benzoylcholine. Alkaline hydrolysis of benzoylcholine follows the kinetics of a first order reaction.

1956 ◽  
Vol 34 (3) ◽  
pp. 637-653 ◽  
Author(s):  
W. Kalow ◽  
K. Genest ◽  
N. Staron

Benzoylcholine stands out from other known substrates of serum cholinesterase because of its high apparent affinity for this enzyme combined with a rapid rate of destruction. The reaction kinetics of the hydrolysis of benzoylcholine can be studied by ultraviolet spectrophotometry, since the absorbance decreases in proportion to the concentration of substrate. Kinetic data obtained by measuring initial reaction rates, and by analyzing continuous hydrolysis curves, are the same within the range of experimental error. The enzymatic data are compatible with the assumption that in the presence of high substrate concentrations a complex consisting of esterase and two substrate molecules is formed. This complex is hydrolyzed more slowly than the complex containing one molecule of substrate which is formed at low concentrations of benzoylcholine. Alkaline hydrolysis of benzoylcholine follows the kinetics of a first order reaction.


1980 ◽  
Vol 45 (10) ◽  
pp. 2808-2816 ◽  
Author(s):  
Ivan Kolb ◽  
Jiří Hetflejš

Kinetics of the title reaction has been studied by the method of initial reaction rates. In the presence of free chiral ligand the hydrosilylation was found to be first order in the catalyst and in the ketone and fractional order in the organosilicon hydride. The rate data and the results of spectroscopic study of interaction of diphenylsilane with the rhodium complex have been interpreted in terms of a reaction model involving formation of the corresponding cationic silyl(hydrido)rhodium complex followed by interaction of the ketone with this complex in the rate determining step. The results are confronted with those obtained for the analogous reaction catalysed by [Rh(1,5-COD)(-)-DIOP]+ClO4-.


1956 ◽  
Vol 34 (1) ◽  
pp. 80-82 ◽  
Author(s):  
P. A. Adie ◽  
F. C. G. Hoskin ◽  
G. S. Trick

The enzymatic hydrolysis of sarin is apparently a single first-order reaction. There is no evidence of different reaction rates for the two possible optical isomers of sarin. During both the enzymatic and the non-enzymatic hydrolyses, sarin appears to be detoxified somewhat more rapidly than the manometric results would indicate. However, the detoxification parallels the manometric results sufficiently to stand in contrast to results obtained using tabun.


1986 ◽  
Vol 51 (4) ◽  
pp. 763-773 ◽  
Author(s):  
Vladimír Morávek ◽  
Miloš Kraus

The rates of single reactions have been measured at 250 °C in the complex reaction of ethanol dehydration to ethylene and to diethyl ether involving also hydrolysis of the ether, its disproportionation to ethanol and ethylene and its dehydration to ethylene. The found dependences of the initial reaction rates on partial pressures of the reactants were correlated by semiempirical Langmuir-Hinshelwood type rate equations.


1956 ◽  
Vol 34 (1) ◽  
pp. 80-82 ◽  
Author(s):  
P. A. Adie ◽  
F. C. G. Hoskin ◽  
G. S. Trick

The enzymatic hydrolysis of sarin is apparently a single first-order reaction. There is no evidence of different reaction rates for the two possible optical isomers of sarin. During both the enzymatic and the non-enzymatic hydrolyses, sarin appears to be detoxified somewhat more rapidly than the manometric results would indicate. However, the detoxification parallels the manometric results sufficiently to stand in contrast to results obtained using tabun.


1994 ◽  
Vol 30 (11) ◽  
pp. 143-146
Author(s):  
Ronald D. Neufeld ◽  
Christopher A. Badali ◽  
Dennis Powers ◽  
Christopher Carson

A two step operation is proposed for the biodegradation of low concentrations (< 10 mg/L) of BETX substances in an up flow submerged biotower configuration. Step 1 involves growth of a lush biofilm using benzoic acid in a batch mode. Step 2 involves a longer term biological transformation of BETX. Kinetics of biotransformations are modeled using first order assumptions, with rate constants being a function of benzoic acid dosages used in Step 1. A calibrated computer model is developed and presented to predict the degree of transformation and biomass level throughout the tower under a variety of inlet and design operational conditions.


Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 295
Author(s):  
Marina Moura Morales ◽  
Nicholas Brian Comerford ◽  
Maurel Behling ◽  
Daniel Carneiro de Abreu ◽  
Iraê Amaral Guerrini

The phosphorus (P) chemistry of biochar (BC)-amended soils is poorly understood. This statement is based on the lack of published research attempting a comprehensive characterization of biochar’s influence on P sorption. Therefore, this study addressed the kinetic limitations of these processes. This was accomplished using a fast pyrolysis biochar made from a mix of waste materials applied to a highly weathered Latossolo Vermelho distrofico (Oxisol) from São Paulo, Brazil. Standard method (batch method) was used. The sorption kinetic studies indicated that P sorption in both cases, soil (S) and soil-biochar (SBC), had a relatively fast initial reaction between 0 to 5 min. This may have happened because adding biochar to the soil decreased P sorption capacity compared to the mineral soil alone. Presumably, this is a result of: (i) Inorganic phosphorus desorbed from biochar was resorbed onto the mineral soil; (ii) charcoal particles physically covered P sorption locations on soil; or (iii) the pH increased when BC was added SBC and the soil surface became more negatively charged, thus increasing anion repulsion and decreasing P sorption.


1971 ◽  
Vol 17 (3) ◽  
pp. 183-191 ◽  
Author(s):  
Philip J Garry

Abstract Dibucaine, used as a differential inhibitor with acetyl-, propionyl-, and butyrylthiocholine as substrate, clearly identified the "usual" and "atypical" serum cholinesterases. Succinylcholine was also used successfully as a differential inhibitor with butyrylthiocholine as substrate. Sodium fluoride, used as a differential inhibitor, gave conflicting results, depending on whether Tris or phosphate buffer was used in the assay. Mono- and divalent cations (NaCl, KCl, MgCl2, CaCl2, and BaCl2) activated the "usual" and inhibited the "atypical" enzyme at low concentrations. The "usual" enzyme had the same activity in 0.05 mol of Tris or phosphate buffer per liter, while the heterozygous and "atypical" enzymes showed 12 and 42% inhibition, respectively, when assayed in the phosphate buffer. Kinetic studies showed the phosphate acted as a competitive inhibitor of "atypical" enzyme. Km values, determined for "usual" and "atypical" enzymes, were 0.057 and 0.226 mmol/liter, respectively, with butyrylthiocholine as substrate.


2008 ◽  
Vol 32 (2) ◽  
pp. 533-540 ◽  
Author(s):  
Vladimir Antônio Silva ◽  
Giuliano Marchi ◽  
Luiz Roberto Guimarães Guilherme ◽  
José Maria de Lima ◽  
Francisco Dias Nogueira ◽  
...  

Kinetic studies on soil potassium release can contribute to a better understanding of K availability to plants. This study was conducted to evaluate K release rates from the whole soil, clay, silt, and sand fractions of B-horizon samples of a basalt-derived Oxisol and a sienite-derived Ultisol, both representative soils from coffee regions of Minas Gerais State, Brazil. Potassium was extracted from each fraction after eight different shaking time periods (0-665 h) with either 0.001 mol L-1 citrate or oxalate at a 1:10 solid:solution ratio. First-order, Elovich, zero-order, and parabolic diffusion equations were used to parameterize the time dependence of K release. For the Oxisol, the first-order equation fitted best to the experimental data of K release, with similar rates for all fractions and independent of the presence of citrate or oxalate in the extractant solution. For all studied Ultisol fractions, in which K release rates increased when extractions were performed with citrate solution, the Elovich model described K release kinetics most adequately. The highest potassium release rate of the Ultisol silt fraction was probably due to the transference of "non-exchangeable" K to the extractant solution, whereas in the Oxisol exchangeable potassium represented the main K source in all studied fractions.


2020 ◽  
pp. 53-61
Author(s):  
Ansharullah Ansharullah ◽  
Muhammad Natsir

The aims of this study were to characterize the kinetics of enzymatic hydrolysis of sago starch, obtained from Southeast Sulawesi Indonesia. The enzyme used for hydrolysis was bacterial ∝-amylase (Termamyl 120L from Bacillus licheniformis, E. C. 3.2.1.1).  The method to determine the initial velocity (Vo) of the hydrolysis was developed by differentiation a nonlinear equation (NLE).  The Vo of the hydrolysis was measured at various pH (6.0, 6.5,and 7.0), temperatures (40, 60, 75 and 95oC), enzyme concentrations (0.5, 1.0, 1.5 and 2.0 µg per mL) and in the presence of 70 ppm Ca++. The optimum conditions of this experiment were found to be at pH 6.5 – 7.0 and 75oC, and the Vo increased with increasing enzyme concentration. The Vo values at various substrate concentrations were also determined, which were then used to calculate the enzymes kinetics constant of the hydrolysis, including Michaelis-Menten constant (Km) and maximum velocity (Vmax) using a Hanes plot.  Km and Vmax values were found to be higher in the measurement at pH 7.0 and 75oC. The Km values  at four  different combinations of pH and temperatures (pH 6.5, 40oC; pH 6.5, 75oC; pH 7.0, 40oC; pH 7.0, 75oC) were found to be 0.86, 3.23, 0.77 and 3.83 mg/mL, respectively; and Vmax values were 17.5, 54.3, 20.3 and 57.1 µg/mL/min, respectively. The results obtained showed that hydrolysis rate of this starch was somewhat low.


Sign in / Sign up

Export Citation Format

Share Document