scholarly journals Determining the neutrino mass ordering and oscillation parameters with KM3NeT/ORCA

2022 ◽  
Vol 82 (1) ◽  
Author(s):  
S. Aiello ◽  
A. Albert ◽  
S. Alves Garre ◽  
Z. Aly ◽  
A. Ambrosone ◽  
...  

AbstractThe next generation of water Cherenkov neutrino telescopes in the Mediterranean Sea are under construction offshore France (KM3NeT/ORCA) and Sicily (KM3NeT/ARCA). The KM3NeT/ORCA detector features an energy detection threshold which allows to collect atmospheric neutrinos to study flavour oscillation. This paper reports the KM3NeT/ORCA sensitivity to this phenomenon. The event reconstruction, selection and classification are described. The sensitivity to determine the neutrino mass ordering was evaluated and found to be 4.4$$\sigma $$ σ if the true ordering is normal and 2.3$$\sigma $$ σ if inverted, after 3 years of data taking. The precision to measure $$\varDelta m^2_{32}$$ Δ m 32 2 and $$\theta _{23}$$ θ 23 were also estimated and found to be $$85 . 10^{-6}~{\mathrm{eV}^{2}}$$ 85 . 10 - 6 eV 2 and $$(^{+1.9}_{-3.1})^{\circ }$$ ( - 3.1 + 1.9 ) ∘ for normal neutrino mass ordering and, $$75 . 10^{-6}~{\mathrm{eV}^{2}}$$ 75 . 10 - 6 eV 2 and $$(^{+2.0}_{-7.0})^{\circ }$$ ( - 7.0 + 2.0 ) ∘ for inverted ordering. Finally, a unitarity test of the leptonic mixing matrix by measuring the rate of tau neutrinos is described. Three years of data taking were found to be sufficient to exclude "Equation missing" event rate variations larger than 20% at $$3\sigma $$ 3 σ level.

2015 ◽  
Vol 2015 ◽  
pp. 1-24 ◽  
Author(s):  
J. P. Yáñez ◽  
A. Kouchner

Neutrino oscillations have been probed during the last few decades using multiple neutrino sources and experimental set-ups. In the recent years, very large volume neutrino telescopes have started contributing to the field. First ANTARES and then IceCube have relied on large and sparsely instrumented volumes to observe atmospheric neutrinos for combinations of baselines and energies inaccessible to other experiments. Using this advantage, the latest result from IceCube starts approaching the precision of other established technologies and is paving the way for future detectors, such as ORCA and PINGU. These new projects seek to provide better measurements of neutrino oscillation parameters and eventually determine the neutrino mass ordering. The results from running experiments and the potential from proposed projects are discussed in this review, emphasizing the experimental challenges involved in the measurements.


2020 ◽  
Vol 35 (09) ◽  
pp. 2030004
Author(s):  
Lino Miramonti

One of the remaining undetermined fundamental aspects in neutrino physics is the determination of the neutrino mass hierarchy, i.e. discriminating between the two possible orderings of the mass eigenvalues, known as Normal and Inverted Hierarchies. The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kt Liquid Scintillator Detector currently under construction in the South of China, can determine the neutrino mass hierarchy and improve the precision of three oscillation parameters by one order of magnitude. Moreover, thanks to its large liquid scintillator mass, JUNO will also contribute to study neutrinos from non-reactor sources such as solar neutrinos, atmospheric neutrinos, geoneutrinos, supernova burst and diffuse supernova neutrinos. Furthermore, JUNO will also contribute to nucleon decay studies. In this work, I will describe the status and the perspectives of the JUNO experiment.


2019 ◽  
Vol 209 ◽  
pp. 01006
Author(s):  
Paolo Fermani ◽  
Irene Di Palma

KM3NeT is a network of submarine Cherenkov neutrino telescopes under construction in two different sites in the Mediterranean Sea [1]. The detector at the Italian site, close to the Sicilian coast and named ARCA, will be devoted to the detection of high-energy astrophysical neutrinos coming from sources in the Universe, while the detector at the French site, in the Toulon bay and named ORCA, will exploit atmospheric neutrinos to determine the neutrino mass hierarchy. The telescopes are an array of flexible strings anchored to the sea floor and held close to vertical by submerged buoys. The strings are instrumented with digital optical modules hosted within pressure-resistant glass spheres, each housing 31 3” photomultipliers tubes and the readout electronics. The geometry of the detectors has been adapted to their physics goals. The first calibrations and results of ARCA and ORCA are presented.


2004 ◽  
Vol 67 (6) ◽  
pp. 1177-1181 ◽  
Author(s):  
E. V. Bugaev ◽  
T. Montaruli ◽  
I. A. Sokalski

The various experiments on lepton number conservation and on nucleon stability currently being done or prepared are reviewed, and their relative merits compared and discussed. The first part of the paper is devoted to the measurement of the neutrino mass and to the present limits on the conservation of the total lepton number and of the various lepton flavours. The existing results and future projects on the strictly connected problems of neutrino oscillations at nuclear reactors, pion factories and high energy accelerators will be also discussed, together with oscillations of solar and atmospheric neutrinos. The second part of the paper concerns the few results and the m any planned detectors on nucleon decay with particular emphasis on the problems of background radioactivity and of the variety of experimental approaches. Oscillation experiments on neutron—antineutron oscillations at nuclear reactors are also considered.


2016 ◽  
Vol 31 (38) ◽  
pp. 1650207 ◽  
Author(s):  
M. Sruthilaya ◽  
Srinu Gollu

To accommodate the recently observed nonzero reactor mixing angle [Formula: see text], we consider the lepton mixing matrix as tri-bimaximal mixing (TBM) form in the leading order along with a perturbation in neutrino sector. The perturbation is taken to be a rotation in 23 plane followed by a rotation in 13 plane, i.e. [Formula: see text]. We obtain the allowed values of the parameters [Formula: see text], [Formula: see text] and [Formula: see text], which can accommodate all the observed mixing angles consistently and calculate the phenomenological observables such as the Dirac CP violating phase [Formula: see text], Jarlskog invariant [Formula: see text], effective Majorana mass [Formula: see text] and [Formula: see text], the electron neutrino mass. We find that [Formula: see text] can take any values between [Formula: see text] and [Formula: see text] and [Formula: see text] always comes below its experimental upper limit.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Weixia Zou ◽  
Chao Guo ◽  
Fengyuan Kang ◽  
Chunqing Zhang

An interference avoidance mechanism for Chinese Wireless Body Area Network (WBAN) is proposed in this paper. This mechanism firstly classifies the channels by priority based on the distribution characteristics of potential interference on the China medical band, commits energy detection on all channels in the network initialization phase, and compares to energy threshold to form available channel set. Then differentiated channel maintenance strategy is utilized to avoid interference as far as possible in network running phase. The scheme proposed in this thesis is proved to be superior by simulation from either the interference probability or packet loss rate. Apart from that, the interference detection threshold that can satisfy the least communication demand is calculated for every Type B, C channel by simulation and convenient for referring to.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 631
Author(s):  
Josip Lorincz ◽  
Ivana Ramljak ◽  
Dinko Begušić

Due to the capability of the effective usage of the radio frequency spectrum, a concept known as cognitive radio has undergone a broad exploitation in real implementations. Spectrum sensing as a core function of the cognitive radio enables secondary users to monitor the frequency band of primary users and its exploitation in periods of availability. In this work, the efficiency of spectrum sensing performed with the energy detection method realized through the square-law combining of the received signals at secondary users has been analyzed. Performance evaluation of the energy detection method was done for the wireless system in which signal transmission is based on Multiple-Input Multiple-Output—Orthogonal Frequency Division Multiplexing. Although such transmission brings different advantages to wireless communication systems, the impact of noise variations known as noise uncertainty and the inability of selecting an optimal signal level threshold for deciding upon the presence of the primary user signal can compromise the sensing precision of the energy detection method. Since the energy detection may be enhanced by dynamic detection threshold adjustments, this manuscript analyses the influence of detection threshold adjustments and noise uncertainty on the performance of the energy detection spectrum sensing method in single-cell cognitive radio systems. For the evaluation of an energy detection method based on the square-law combining technique, the mathematical expressions of the main performance parameters used for the assessment of spectrum sensing efficiency have been derived. The developed expressions were further assessed by executing the algorithm that enabled the simulation of the energy detection method based on the square-law combining technique in Multiple-Input Multiple-Output—Orthogonal Frequency Division Multiplexing cognitive radio systems. The obtained simulation results provide insights into how different levels of detection threshold adjustments and noise uncertainty affect the probability of detection of primary user signals. It is shown that higher signal-to-noise-ratios, the transmitting powers of primary user, the number of primary user transmitting and the secondary user receiving antennas, the number of sampling points and the false alarm probabilities improve detection probability. The presented analyses establish the basis for understanding the energy detection operation through the possibility of exploiting the different combinations of operating parameters which can contribute to the improvement of spectrum sensing efficiency of the energy detection method.


2019 ◽  
Vol 216 ◽  
pp. 02006 ◽  
Author(s):  
Salvatore Viola

In the Mediterranean Sea, the KM3NeT Collaboration is constructing a the deep-sea research infrastructure hosting next generation neutrino telescopes. In the KM3NeT telescopes the Cherenkov radiation induced by the secondary charged particles produced in the interaction of cosmic and atmospheric neutrinos within an effective volume between megaton and several cubic kilometers of water are detected by an array of thousands of photomultipliers. The capability of the telescope to determine the direction of secondary charged particles and to point back to the neutrino source is strongly connected to the accuracy on photomultipliers positions. In KM3NeT, the photomultiplier positions are continuously monitored by an acoustic positioning system, designed by the KM3NeT Collaboration to reach an accuracy of the photomultiplier positions better than 20 cm.


2019 ◽  
Vol 206 ◽  
pp. 09009
Author(s):  
Ha Nguyen Thi Kim ◽  
Van Nguyen Thi Hong ◽  
Son Cao Van

Neutrinos are neutral leptons and there exist three types of neutrinos (electron neutrinos νe, muon neutrinos νµ and tau neutrinos ντ). These classifications are referred to as neutrinos’s “flavors”. Oscillations between the different flavors are known as neutrino oscillations, which occurs when neutrinos have mass and non-zero mixing. Neutrino mixing is governed by the PMNS mixing matrix. The PMNS mixing matrix is constructed as the product of three independent rotations. With that, we can describe the numerical parameters of the matrix in a graphical form called the unitary triangle, giving rise to CP violation. We can calculate the four parameters of the mixing matrix to draw the unitary triangle. The area of the triangle is a measure of the amount of CP violation.


Sign in / Sign up

Export Citation Format

Share Document