Two-dimensional spatial solitons in highly nonlocal nonlinear media

2009 ◽  
Vol 53 (1) ◽  
pp. 97-106 ◽  
Author(s):  
M. R. Belić ◽  
W. -P. Zhong
2006 ◽  
Vol 73 (6) ◽  
Author(s):  
S. Skupin ◽  
O. Bang ◽  
D. Edmundson ◽  
W. Krolikowski

2012 ◽  
Vol 285 (16) ◽  
pp. 3535-3540
Author(s):  
Guodong Yan ◽  
Zhiwei Shi ◽  
Huagang Li

2006 ◽  
Vol 31 (22) ◽  
pp. 3312 ◽  
Author(s):  
Carmel Rotschild ◽  
Mordechai Segev ◽  
Zhiyong Xu ◽  
Yaroslav V. Kartashov ◽  
Lluis Torner ◽  
...  

2008 ◽  
Vol 78 (3) ◽  
Author(s):  
Wei-Ping Zhong ◽  
Milivoj Belić ◽  
Rui-Hua Xie ◽  
Goong Chen

2016 ◽  
Vol 24 (25) ◽  
pp. 28784 ◽  
Author(s):  
Guo Liang ◽  
Weiyi Hong ◽  
Qi Guo

2015 ◽  
Vol 44 (2) ◽  
pp. 172-177
Author(s):  
Si-Liu Xu ◽  
Nikola Petrović ◽  
Milivoj R. Belić

Author(s):  
Ming Shen ◽  
Ye Chen ◽  
Lijuan Ge ◽  
Xinglin Wang

Abstract Propagation dynamics of two-dimensional Airy Gaussian beam and Airy Gaussian vortex beam are investigated numerically in local and nonlocal nonlinear media. The self-healing and collapse of the beam depend crucially on the distribution factor $b$ and the topological charge $m$. With the help of nonlocality, stable Airy Gaussian beam and Airy Gaussian vortex beam with larger amplitude can be obtained, which always collapse in local nonlinear media. When the distribution factor $b$ is large enough, the Airy Gaussian vortex beam will transfer into quasi-vortex solitons in nonlocal nonlinear media.


Sign in / Sign up

Export Citation Format

Share Document