Vibration and buckling characteristics of nonlocal beam placed in a magnetic field embedded in Winkler–Pasternak elastic foundation using a new refined beam theory: an analytical approach

Author(s):  
Subrat Kumar Jena ◽  
S. Chakraverty ◽  
Mohammad Malikan
Author(s):  
Wachirawit SONGSUWAN ◽  
Monsak PIMSARN ◽  
Nuttawit WATTANASAKULPONG

The dynamic behavior of functionally graded (FG) sandwich beams resting on the Pasternak elastic foundation under an arbitrary number of harmonic moving loads is presented by using Timoshenko beam theory, including the significant effects of shear deformation and rotary inertia. The equation of motion governing the dynamic response of the beams is derived from Lagrange’s equations. The Ritz and Newmark methods are implemented to solve the equation of motion for obtaining free and forced vibration results of the beams with different boundary conditions. The influences of several parametric studies such as layer thickness ratio, boundary condition, spring constants, length to height ratio, velocity, excitation frequency, phase angle, etc., on the dynamic response of the beams are examined and discussed in detail. According to the present investigation, it is revealed that with an increase of the velocity of the moving loads, the dynamic deflection initially increases with fluctuations and then drops considerably after reaching the peak value at the critical velocity. Moreover, the distance between the loads is also one of the important parameters that affect the beams’ deflection results under a number of moving loads.


2013 ◽  
Vol 353-356 ◽  
pp. 1394-1397
Author(s):  
Zhi Jie Sun ◽  
Jun Min Shen ◽  
Zhong Ming Su ◽  
Xiao Hui Xue

Based on the Pasternak elastic foundation beam theory, mechanical models solving process of pipe-roof based on the MATLAB is elaborate, and the mechanical behavior of pipe-roof reinforcement is analyzed. Results show that the pipe-roof can play an leveraged part in surrounding rock, which can make the deformation and the load around tunnel face effectively passing to no excavation section near the excavation. In pipe-roof support conditions, the longitudinal influence scope of tunnel due to excavation is about 1.3~1.5 times the excavation height.


2018 ◽  
Vol 148 ◽  
pp. 13004 ◽  
Author(s):  
Vasile Marinca ◽  
Nicolae Herisanu

By using the Optimal Auxiliary Functions Method (OAFM), nonlinear free thermomechanical vibration of functionally graded beam (FGB) on Winkler-Pasternak elastic foundation is studied. Based on von Karman geometric nonlinearity, on Euler-Bernoulli beam theory and also on Galerkin procedure we obtain a second-order nonlinear differential equation with quadratic and cubic nonlinear terms. The results obtained by means of OAFM are compared and shown to be in an excellent agreement with available solutions known in the literature.


Author(s):  
T. Chen ◽  
C. M. Harvey ◽  
S. Wang ◽  
V. V. Silberschmidt

AbstractDouble-cantilever beams (DCBs) are widely used to study mode-I fracture behavior and to measure mode-I fracture toughness under quasi-static loads. Recently, the authors have developed analytical solutions for DCBs under dynamic loads with consideration of structural vibration and wave propagation. There are two methods of beam-theory-based data reduction to determine the energy release rate: (i) using an effective built-in boundary condition at the crack tip, and (ii) employing an elastic foundation to model the uncracked interface of the DCB. In this letter, analytical corrections for a crack-tip rotation of DCBs under quasi-static and dynamic loads are presented, afforded by combining both these data-reduction methods and the authors’ recent analytical solutions for each. Convenient and easy-to-use analytical corrections for DCB tests are obtained, which avoid the complexity and difficulty of the elastic foundation approach, and the need for multiple experimental measurements of DCB compliance and crack length. The corrections are, to the best of the authors’ knowledge, completely new. Verification cases based on numerical simulation are presented to demonstrate the utility of the corrections.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1168
Author(s):  
Elena Belenkaya ◽  
Ivan Pensionerov

On 14 January 2008, the MESSENGER spacecraft, during its first flyby around Mercury, recorded the magnetic field structure, which was later called the “double magnetopause”. The role of sodium ions penetrating into the Hermean magnetosphere from the magnetosheath in generation of this structure has been discussed since then. The violation of the symmetry of the plasma parameters at the magnetopause is the cause of the magnetizing current generation. Here, we consider whether the change in the density of sodium ions on both sides of the Hermean magnetopause could be the cause of a wide diamagnetic current in the magnetosphere at its dawn-side boundary observed during the first MESSENGER flyby. In the present paper, we propose an analytical approach that made it possible to determine the magnetosheath Na+ density excess providing the best agreement between the calculation results and the observed magnetic field in the double magnetopause.


Sign in / Sign up

Export Citation Format

Share Document