scholarly journals Using a Financial Training Criterion Rather than a Prediction Criterion

1997 ◽  
Vol 08 (04) ◽  
pp. 433-443 ◽  
Author(s):  
Yoshua Bengio

The application of this work is to decision making with financial time series, using learning algorithms. The traditional approach is to train a model using a prediction criterion, such as minimizing the squared error between predictions and actual values of a dependent variable, or maximizing the likelihood of a conditional model of the dependent variable. We find here with noisy time series that better results can be obtained when the model is directly trained in order to maximize the financial criterion of interest, here gains and losses (including those due to transactions) incurred during trading. Experiments were performed on portfolio selection with 35 Canadian stocks.

Data ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 126 ◽  
Author(s):  
Vlasenko ◽  
Vlasenko ◽  
Vynokurova ◽  
Bodyanskiy ◽  
Peleshko

Neuro-fuzzy models have a proven record of successful application in finance. Forecasting future values is a crucial element of successful decision making in trading. In this paper, a novel ensemble neuro-fuzzy model is proposed to overcome limitations and improve the previously successfully applied a five-layer multidimensional Gaussian neuro-fuzzy model and its learning. The proposed solution allows skipping the error-prone hyperparameters selection process and shows better accuracy results in real life financial data.


2020 ◽  
Author(s):  
Ni Zhan ◽  
Yijia Sun ◽  
Aman Jakhar ◽  
He Liu

Risks ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 115 ◽  
Author(s):  
Xin Liu ◽  
Jiang Wu ◽  
Chen Yang ◽  
Wenjun Jiang

In this paper, we propose a clustering procedure of financial time series according to the coefficient of weak lower-tail maximal dependence (WLTMD). Due to the potential asymmetry of the matrix of WLTMD coefficients, the clustering procedure is based on a generalized weighted cuts method instead of the dissimilarity-based methods. The performance of the new clustering procedure is evaluated by simulation studies. Finally, we illustrate that the optimal mean-variance portfolio constructed based on the resulting clusters manages to reduce the risk of simultaneous large losses effectively.


2005 ◽  
Vol 7 (2) ◽  
pp. 63-84 ◽  
Author(s):  
Kaj Nyström ◽  
Jimmy Skoglund

Sign in / Sign up

Export Citation Format

Share Document