NEW PIEZOELECTRIC SUBSTRATES FOR SAW DEVICES
Recent developments in single crystal piezoelectric materials have focused on the search for "ideal" materials with zero temperature coefficient of frequency orientations featuring jointly high piezoelectric coupling, high intrinsic Q, zero power flow angle, and minimized diffraction effects. In addition, the desired materials should have no low temperature phase transitions, and a physical chemistry conducive to repeatable, low cost growth and wafer scale device production. As difficult as it might seem to find such "ideal" materials, three completely different but strong candidate materials have emerged recently: the quartz homeotype gallium orthophosphate, the quartz isotype calcium gallo-germanates (langasite, langanite, langatate, etc.), and diomignite (lithium tetraborate). The current state-of-the-art and prospects for future development of these materials are considered.