MINIMAL DYNAMICS AND $\mathcal{Z}$-STABLE CLASSIFICATION

2011 ◽  
Vol 22 (01) ◽  
pp. 1-23 ◽  
Author(s):  
KAREN R. STRUNG ◽  
WILHELM WINTER

Let X be an infinite compact metric space, α : X → X a minimal homeomorphism, u the unitary that implements α in the transformation group C*-algebra C(X) ⋊α ℤ, and [Formula: see text] a class of separable nuclear C*-algebras that contains all unital hereditary C*-subalgebras of C*-algebras in [Formula: see text]. Motivated by the success of tracial approximation by finite dimensional C*-algebras as an abstract characterization of classifiable C*-algebras and the idea that classification results for C*-algebras tensored with UHF algebras can be used to derive classification results up to tensoring with the Jiang-Su algebra [Formula: see text], we prove that (C(X) ⋊α ℤ) ⊗ Mq∞ is tracially approximately [Formula: see text] if there exists a y ∈ X such that the C*-subalgebra (C*(C(X), uC0(X\{y}))) ⊗ Mq∞ is tracially approximately [Formula: see text]. If the class [Formula: see text] consists of finite dimensional C*-algebras, this can be used to deduce classification up to tensoring with [Formula: see text] for C*-algebras associated to minimal dynamical systems where projections separate tracial states. This is done without making any assumptions on the real rank or stable rank of either C(X) ⋊α ℤ or C*(C(X), uC0(X\{y})), nor on the dimension of X. The result is a key step in the classification of C*-algebras associated to uniquely ergodic minimal dynamical systems by their ordered K-groups. It also sets the stage to provide further classification results for those C*-algebras of minimal dynamical systems where projections do not necessarily separate traces.

2014 ◽  
Vol 06 (04) ◽  
pp. 465-540 ◽  
Author(s):  
Karen R. Strung ◽  
Wilhelm Winter

In this paper we show that certain simple locally recursive subhomogeneous (RSH) C*-algebras are tracially approximately interval algebras after tensoring with the universal UHF algebra. This involves a linear algebraic encoding of the structure of the local RSH algebra allowing us to find a path through the algebra which looks like a discrete version of [0, 1] and exhausts most of the algebra. We produce an actual copy of the interval and use properties of C*-algebras tensored with UHF algebras to move the honest interval underneath the discrete version. It follows from our main result that such C*-algebras are classifiable by Elliott invariants. Our theorem requires finitely many tracial states that all induce the same state on the K0-group; in particular we do not require that projections separate tracial states. We apply our results to classify some examples of C*-algebras constructed by Elliott to exhaust the invariant. We also give an alternative way to classify examples of Lin and Matui of C*-algebras of minimal dynamical systems. In this way our result can be viewed as a first step towards removing the requirement that projections separate tracial states in the classification theorem for C*-algebras of minimal dynamical systems given by Toms and the second named author.


1997 ◽  
Vol 49 (5) ◽  
pp. 963-1009 ◽  
Author(s):  
Huaxin Lin

AbstractLet A be a simple C*-algebra with real rank zero, stable rank one and weakly unperforated K0(A) of countable rank. We show that a monomorphism Φ: C(S2) → A can be approximated pointwise by homomorphisms from C(S2) into A with finite dimensional range if and only if certain index vanishes. In particular,we show that every homomorphism ϕ from C(S2) into a UHF-algebra can be approximated pointwise by homomorphisms from C(S2) into the UHF-algebra with finite dimensional range.As an application, we show that if A is a simple C*-algebra of real rank zero and is an inductive limit of matrices over C(S2) then A is an AF-algebra. Similar results for tori are also obtained. Classification of Hom (C(X), A) for lower dimensional spaces is also studied.


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1900
Author(s):  
Anton A. Kutsenko

The infinite product of matrices with integer entries, known as a modified Glimm–Bratteli symbol n, is a new, sufficiently simple, and very powerful tool for the characterization of approximately finite-dimensional (AF) algebras. This symbol provides a convenient algebraic representation of the Bratteli diagram for AF algebras in the same way as was previously performed by J. Glimm for more simple uniformly hyperfinite (UHF) algebras. We apply this symbol to characterize integrodifferential algebras. The integrodifferential algebra FN,M is the C*-algebra generated by the following operators acting on L2([0,1)N→CM): (1) operators of multiplication by bounded matrix-valued functions, (2) finite-difference operators, and (3) integral operators. Most of the operators and their approximations studying in physics belong to these algebras. We give a complete characterization of FN,M. In particular, we show that FN,M does not depend on M, but depends on N. At the same time, it is known that differential algebras HN,M, generated by the operators (1) and (2) only, do not depend on both dimensions N and M; they are all *-isomorphic to the universal UHF algebra. We explicitly compute the Glimm–Bratteli symbols (for HN,M, it was already computed earlier) which completely characterize the corresponding AF algebras. This symbol n is an infinite product of matrices with nonnegative integer entries. Roughly speaking, all the symmetries appearing in the approximation of complex infinite-dimensional integrodifferential and differential algebras by finite-dimensional ones are coded by a product of integer matrices.


1986 ◽  
Vol 29 (1) ◽  
pp. 97-100 ◽  
Author(s):  
R. J. Archbold ◽  
Alexander Kumjian

A C*-algebra A is said to be approximately finite dimensional (AF) if it is the inductive limit of a sequence of finite dimensional C*-algebras(see [2], [5]). It is said to be nuclear if, for each C*-algebra B, there is a unique C*-norm on the *-algebraic tensor product A ⊗B [11]. Since finite dimensional C*-algebras are nuclear, and inductive limits of nuclear C*-algebras are nuclear [16];,every AF C*-algebra is nuclear. The family of nuclear C*-algebras is a large and well-behaved class (see [12]). The AF C*-algebras for a particularly tractable sub-class which has been completely classified in terms of the invariant K0 [7], [5].


2003 ◽  
Vol 46 (2) ◽  
pp. 164-177 ◽  
Author(s):  
Andrew J. Dean

AbstractAn AF flow is a one-parameter automorphism group of an AF C*-algebra A such that there exists an increasing sequence of invariant finite dimensional sub-C*-algebras whose union is dense in A. In this paper, a classification of C*-dynamical systems of this form up to equivariant isomorphism is presented. Two pictures of the actions are given, one in terms of a modified Bratteli diagram/pathspace construction, and one in terms of a modified K0 functor.


2019 ◽  
pp. 1-26
Author(s):  
Bo Cui ◽  
Chunlan Jiang ◽  
Liangqing Li

An ATAI (or ATAF, respectively) algebra, introduced in [C. Jiang, A classification of non simple C*-algebras of tracial rank one: Inductive limit of finite direct sums of simple TAI C*-algebras, J. Topol. Anal. 3 (2011) 385–404] (or in [X. C. Fang, The classification of certain non-simple C*-algebras of tracial rank zero, J. Funct. Anal. 256 (2009) 3861–3891], respectively) is an inductive limit [Formula: see text], where each [Formula: see text] is a simple separable nuclear TAI (or TAF) C*-algebra with UCT property. In [C. Jiang, A classification of non simple C*-algebras of tracial rank one: Inductive limit of finite direct sums of simple TAI C*-algebras, J. Topol. Anal. 3 (2011) 385–404], the second author classified all ATAI algebras by an invariant consisting orderd total [Formula: see text]-theory and tracial state spaces of cut down algebras under an extra restriction that all element in [Formula: see text] are torsion. In this paper, we remove this restriction, and obtained the classification for all ATAI algebras with the Hausdorffized algebraic [Formula: see text]-group as an addition to the invariant used in [C. Jiang, A classification of non simple C*-algebras of tracial rank one: Inductive limit of finite direct sums of simple TAI C*-algebras, J. Topol. Anal. 3 (2011) 385–404]. The theorem is proved by reducing the class to the classification theorem of [Formula: see text] algebras with ideal property which is done in [G. Gong, C. Jiang and L. Li, A classification of inductive limit C*-algebras with ideal property, preprint (2016), arXiv:1607.07681]. Our theorem generalizes the main theorem of [X. C. Fang, The classification of certain non-simple C*-algebras of tracial rank zero, J. Funct. Anal. 256 (2009) 3861–3891], [C. Jiang, A classification of non simple C*-algebras of tracial rank one: Inductive limit of finite direct sums of simple TAI C*-algebras, J. Topol. Anal. 3 (2011) 385–404] (see Corollary 4.3).


2004 ◽  
Vol 15 (09) ◽  
pp. 919-957 ◽  
Author(s):  
MARIUS DADARLAT

Let A, B be separable simple unital tracially AF C*-algebras. Assuming that A is exact and satisfies the Universal Coefficient Theorem (UCT) in KK-theory, we prove the existence, and uniqueness modulo approximately inner automorphisms, of nuclear *-homomorphisms from A to B with prescribed K-theory data. This implies the AF-embeddability of separable exact residually finite-dimensional C*-algebras satisfying the UCT and reproves Huaxin Lin's theorem on the classification of nuclear tracially AF C*-algebras.


2014 ◽  
Vol 25 (07) ◽  
pp. 1450065 ◽  
Author(s):  
Rui Okayasu

For every p ≥ 2, we give a characterization of positive definite functions on a free group with finitely many generators, which can be extended to positive linear functionals on the free group C*-algebra associated with the ideal ℓp. This is a generalization of Haagerup's characterization for the case of the reduced free group C*-algebra. As a consequence, the canonical quotient map between the associated C*-algebras is not injective, and they have a unique tracial state.


1980 ◽  
Vol 21 (2) ◽  
pp. 143-149
Author(s):  
Charles A. Akemann ◽  
Steve Wright

In Section 33 of [2], Bonsall and Duncan define an elementtof a Banach algebratoact compactlyonif the mapa→tatis a compact operator on. In this paper, the arguments and technique of [1] are used to study this question for C*-algebras (see also [10]). We determine the elementsbof a C*-algebrafor which the mapsa→ba,a→ab,a→ab+ba,a→babare compact (respectively weakly compact), determine the C*-algebras which are compact in the sense of Definition 9, of [2, p. 177] and give a characterization of the C*-automorphisms ofwhich are weakly compact perturbations of the identity.


Sign in / Sign up

Export Citation Format

Share Document