THE CRITICAL BEHAVIOR OF THE 2D SPIN-1 ISING MODEL WITH THE BILINEAR AND POSITIVE BIQUADRATIC NEAREST NEIGHBOR INTERACTIONS ON A CELLULAR AUTOMATON

2004 ◽  
Vol 15 (10) ◽  
pp. 1425-1438 ◽  
Author(s):  
A. SOLAK ◽  
B. KUTLU

The two-dimensional BEG model with nearest neighbor bilinear and positive biquadratic interaction is simulated on a cellular automaton, which is based on the Creutz cellular automaton for square lattice. Phase diagrams characterizing phase transitions of the model are presented for comparison with those obtained from other calculations. We confirm the existence of the tricritical points over the phase boundary for D/K>0. The values of static critical exponents (α, β, γ and ν) are estimated within the framework of the finite size scaling theory along D/K=-1 and 1 lines. The results are compatible with the universal Ising critical behavior except the points over phase boundary.

2001 ◽  
Vol 12 (09) ◽  
pp. 1401-1413 ◽  
Author(s):  
B. KUTLU

The two-dimensional ferromagnetic Blume–Capel model is simulated on a cellular automaton, which based on the Creutz cellular automaton for square lattice. The values of the critical temperature and the static critical exponents are estimated within the framework of the finite-size scaling theory for 0 ≤ D/J ≤ 1.5. The results are compatible with the universal Ising critical behavior.


2003 ◽  
Vol 14 (10) ◽  
pp. 1305-1320 ◽  
Author(s):  
BÜLENT KUTLU

The two-dimensional antiferromagnetic spin-1 Ising model with positive biquadratic interaction is simulated on a cellular automaton which based on the Creutz cellular automaton for square lattice. Phase diagrams characterizing phase transition of the model are presented for a comparison with those obtained from other calculations. We confirm the existence of the intermediate phase observed in previous works for some values of J/K and D/K. The values of the static critical exponents (β, γ and ν) are estimated within the framework of the finite-size scaling theory for D/K<2J/K. Although the results are compatible with the universal Ising critical behavior in the region of D/K<2J/K-4, the model does not exhibit any universal behavior in the interval 2J/K-4<D/K<2J/K.


2000 ◽  
Vol 11 (03) ◽  
pp. 561-572 ◽  
Author(s):  
B. KUTLU ◽  
M. KASAP ◽  
S. TURAN

The two-dimensional Ising model in a small external magnetic field, is simulated on the Creutz cellular automaton. The values of the static critical exponents for 0.0025 ≤ h ≤ 0.025 are estimated within the framework of the finite size scaling theory. The value of the field critical exponent is in a good agreement with its theoretical value of δ = 15. The results for 0.0025 ≤ h ≤ 0.025 are compatible with Ising critical behavior for T < Tc.


2014 ◽  
Vol 215 ◽  
pp. 17-21
Author(s):  
Akai K. Murtazaev ◽  
Magomedsheikh K. Ramazanov ◽  
Magomedzagir K. Badiev

The critical properties of two-dimensional antiferromagnetic Ising model in square lattice are investigated using the replica Monte-Carlo method with account of interactions of second nearest neighbors. The diagram of critical temperature dependence on an interaction value of second nearest neighbors is plotted. Static critical exponents of the heat capacity α, susceptibility γ, magnetization β, and correlation radius ν are calculated for this model using the finite-size scaling theory.


2010 ◽  
Vol 65 (8-9) ◽  
pp. 705-710 ◽  
Author(s):  
Ziya Merdan ◽  
Mehmet Bayirli ◽  
Mustafa Kemal Ozturk

The fractals are obtained by using the model of diffusion-limited aggregation (DLA) for the lattice with L = 80, 120, and 160. The values of the fractal dimensions are compared with the results of former studies. As increasing the linear dimensions they are in good agreement with those. The fractals obtained by using the model of DLA are simulated on the Creutz cellular automaton by using a two-bit demon. The values computed for the critical temperature and the static critical exponents within the framework of the finite-size scaling theory are in agreement with the results of other simulations and theoretical values


1999 ◽  
Vol 10 (05) ◽  
pp. 875-881 ◽  
Author(s):  
N. AKTEKIN ◽  
A. GÜNEN ◽  
Z. SAĞLAM

The four-dimensional Ising model is simulated on the Creutz cellular automaton with increased precision. The data are analyzed according to the finite-size scaling relations available. The precision of the critical values related to magnetic susceptibility is improved by one digit, but in order to reach to the same precision for those related to the specific heat more simulation runs at the critical temperatures of the finite-size lattices are required.


1985 ◽  
Vol 31 (11) ◽  
pp. 7166-7170 ◽  
Author(s):  
Paul D. Beale ◽  
Phillip M. Duxbury ◽  
Julia Yeomans

Sign in / Sign up

Export Citation Format

Share Document