EMPIRICAL ANALYSIS OF ATTENTION BEHAVIORS IN ONLINE SOCIAL NETWORKS

2010 ◽  
Vol 21 (07) ◽  
pp. 955-971 ◽  
Author(s):  
FANG DU ◽  
QI XUAN ◽  
TIE-JUN WU

Studying attention behavior has its social significance because such behavior is considered to lead the evolution of the friendship network. However, this type of behavior in social networks has attracted relatively little attention before, which is mainly because, in reality, such behaviors are always transitory and rarely recorded. In this paper, we collected the attention behaviors as well as the friendship network from Douban database and then carefully studied the attention behaviors in the friendship network as a latent metric space. The revealed similar patterns of attention behavior and friendship suggest that attention behavior may be the pre-stage of friendship to a certain extent, which can be further validated by the fact that pairwise nodes in Douban network connected by attention links beforehand are indeed far more likely to be connected by friendship links in the near future. This phenomenon can also be used to explain the high clustering of many social networks. More interestingly, it seems that attention behaviors are more likely to take place between individuals who have more mutual friends as well as more different friends, which seems a little different from the principles of many link prediction algorithms. Moreover, it is also found that forward attention is preferred to inverse attention, which is quite natural because, usually, an individual must be more interested in others that he is paying attention to than those paying attention to him. All of these findings can be used to guide the design of more appropriate social network models in the future.

2020 ◽  
Vol 39 (3) ◽  
pp. 2797-2816
Author(s):  
Muhammad Akram ◽  
Anam Luqman ◽  
Ahmad N. Al-Kenani

An extraction of granular structures using graphs is a powerful mathematical framework in human reasoning and problem solving. The visual representation of a graph and the merits of multilevel or multiview of granular structures suggest the more effective and advantageous techniques of problem solving. In this research study, we apply the combinative theories of rough fuzzy sets and rough fuzzy digraphs to extract granular structures. We discuss the accuracy measures of rough fuzzy approximations and measure the distance between lower and upper approximations. Moreover, we consider the adjacency matrix of a rough fuzzy digraph as an information table and determine certain indiscernible relations. We also discuss some general geometric properties of these indiscernible relations. Further, we discuss the granulation of certain social network models using rough fuzzy digraphs. Finally, we develop and implement some algorithms of our proposed models to granulate these social networks.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Sunyoung Park ◽  
Lasse Gerrits

AbstractAlthough migration has long been an imperative topic in social sciences, there are still needs of study on migrants’ unique and dynamic transnational identity, which heavily influences the social integration in the host society. In Online Social Network (OSN), where the contemporary migrants actively communicate and share their stories the most, different challenges against migrants’ belonging and identity and how they cope or reconcile may evidently exist. This paper aims to scrutinise how migrants are manifesting their belonging and identity via different technological types of online social networks, to understand the relations between online social networks and migrants’ multi-faceted transnational identity. The research introduces a comparative case study on an online social movement led by Koreans in Germany via their online communities, triggered by a German TV advertisement considered as stereotyping East Asians given by white supremacy’s point of view. Starting with virtual ethnography on three OSNs representing each of internet generations (Web 1.0 ~ Web 3.0), two-step Qualitative Data Analysis is carried out to examine how Korean migrants manifest their belonging and identity via their views on “who we are” and “who are others”. The analysis reveals how Korean migrants’ transnational identities differ by their expectation on the audience and the members in each online social network, which indicates that the distinctive features of the online platform may encourage or discourage them in shaping transnational identity as a group identity. The paper concludes with the two main emphases: first, current OSNs comprising different generational technologies play a significant role in understanding the migrants’ dynamic social values, and particularly, transnational identities. Second, the dynamics of migrants’ transnational identity engages diverse social and situational contexts. (keywords: transnational identity, migrants’ online social networks, stereotyping migrants, technological evolution of online social network).


2014 ◽  
Vol 25 (10) ◽  
pp. 1450056 ◽  
Author(s):  
Ke-Ke Shang ◽  
Wei-Sheng Yan ◽  
Xiao-Ke Xu

Previously many studies on online social networks simply analyze the static topology in which the friend relationship once established, then the links and nodes will not disappear, but this kind of static topology may not accurately reflect temporal interactions on online social services. In this study, we define four types of users and interactions in the interaction (dynamic) network. We found that active, disappeared, new and super nodes (users) have obviously different strength distribution properties and this result also can be revealed by the degree characteristics of the unweighted interaction and friendship (static) networks. However, the active, disappeared, new and super links (interactions) only can be reflected by the strength distribution in the weighted interaction network. This result indicates the limitation of the static topology data on analyzing social network evolutions. In addition, our study uncovers the approximately stable statistics for the dynamic social network in which there are a large variation for users and interaction intensity. Our findings not only verify the correctness of our definitions, but also helped to study the customer churn and evaluate the commercial value of valuable customers in online social networks.


2016 ◽  
Vol 42 (6) ◽  
pp. 536-552 ◽  
Author(s):  
Shaista Wasiuzzaman ◽  
Siavash Edalat

Purpose – The vast amount of information available via online social networks (OSN) makes it a very good avenue for understanding human behavior. One of the human characteristics of interest to financial practitioners is an individual’s financial risk tolerance. The purpose of this paper is to look at the relationship between an individual’s OSN behavior and his/her financial risk tolerance. Design/methodology/approach – The study uses data collected from a sample of 220 university students and the backward variables selection ordinary least squares regression analysis technique to achieve its objective. Findings – The results of the study find that the frequency of logging on to social network sites indicates an individual who has higher financial risk tolerance. Additionally, the increasing use of social networks for social connection is found to be associated with lower financial risk tolerance. The results are mostly consistent when the sample is split based on prior financial knowledge. Originality/value – To the authors’ knowledge this is the first study which documents the possibility of understanding an individual’s financial risk tolerance via his/her social network activity. This provides investment/financial consultants with more avenues for gathering information in order to understand their current or potential clients hence providing better services.


2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S529-S529
Author(s):  
Daniele Zaccaria ◽  
Georgia Casanova ◽  
Antonio Guaita

Abstract In the last decades the study of older people and social networks has been at the core of gerontology research. The literature underlines the positive health effects of traditional and online social connections and also the social networks’s positive impact on cognitive performance, mental health and quality of life. Aging in a Networked Society is a randomized controlled study aimed at investigating causal impact of traditional face-to-face social networks and online social networks (e.g. Social Network Sites) on older people’ health, cognitive functions and well-being. A social experiment, based on a pre-existing longitudinal study (InveCe - Brain Aging in Abbiategrasso) has involved 180 older people born from 1935 to 1939 living in Abbiategrasso, a municipality near Milan. We analyse effects on health and well-being of smartphones and Facebook use (compared to engagement in a more traditional face-to-face activity), exploiting the research potential of past waves of InveCe study, which collected information concerning physical, cognitive and mental health using international validate scale, blood samples, genetic markers and information on social networks and socio-demographic characteristics of all participants. Results of statistical analysis show that poor social relations and high level of perceived loneliness (measured by Lubben Scale and UCLA Loneliness scale) affect negatively physical and mental outcomes. We also found that gender and marital status mediate the relationship between loneliness and mental wellbeing, while education has not significant effect. Moreover, trial results underline the causal impact of ICT use (smartphones, internet, social network sites) on self-perceived loneliness and cognitive and physical health.


Author(s):  
Abhishek Vaish ◽  
Rajiv Krishna G. ◽  
Akshay Saxena ◽  
Dharmaprakash M. ◽  
Utkarsh Goel

The aim of this research is to propose a model through which the viral nature of an information item in an online social network can be quantified. Further, the authors propose an alternate technique for information asset valuation by accommodating virality in it which not only complements the existing valuation system, but also improves the accuracy of the results. They use a popularly available YouTube dataset to collect attributes and measure critical factors such as share-count, appreciation, user rating, controversiality, and comment rate. These variables are used with a proposed formula to obtain viral index of each video on a given date. The authors then identify a conventional and a hybrid asset valuation technique to demonstrate how virality can fit in to provide accurate results.The research demonstrates the dependency of virality on critical social network factors. With the help of a second dataset acquired, the authors determine the pattern virality of an information item takes over time.


2019 ◽  
Vol 10 ◽  
pp. 35
Author(s):  
Andrey  Rodrigues ◽  
Natasha  M. C. Valentim ◽  
Eduardo  Feitosa

In the last few years, Online Social Networks (OSN) have experienced growth in the number of users, becoming an increasingly embedded part of people’s daily lives. Privacy expectations of OSNs are higher as more members start realizing potential privacy problems they face by interacting with these systems. Inspection methods can be an effective alternative for addressing privacy problems because they detect possible defects that could be causing the system to behave in an undesirable way. Therefore, we proposed a set of privacy inspection techniques called PIT-OSN (Privacy Inspection Techniques for Online Social Network). This paper presents the description and evolution of PIT-OSN through the results of a preliminary empirical study. We discuss the quantitative and qualitative results and their impact on improving the techniques. Results indicate that our techniques assist non-expert inspectors uncover privacy problems effectively, and are considered easy to use and useful by the study participants. Finally, the qualitative analysis helped us improve some technique steps that might be unclear.


Author(s):  
Putra Wanda ◽  
Marselina Endah Hiswati ◽  
Huang J. Jie

Manual analysis for malicious prediction in Online Social Networks (OSN) is time-consuming and costly. With growing users within the environment, it becomes one of the main obstacles. Deep learning is growing algorithm that gains a big success in computer vision problem. Currently, many research communities have proposed deep learning techniques to automate security tasks, including anomalous detection, malicious link prediction, and intrusion detection in OSN. Notably, this article describes how deep learning makes the OSN security technique more intelligent for detecting malicious activity by establishing a classifier model.


2022 ◽  
Vol 2022 ◽  
pp. 1-9
Author(s):  
Huazhang Liu

With the rapid development of the Internet, social networks have shown an unprecedented development trend among college students. Closer social activities among college students have led to the emergence of college students with new social characteristics. The traditional method of college students’ group classification can no longer meet the current demand. Therefore, this paper proposes a social network link prediction method-combination algorithm, which combines neighbor information and a random block. By mining the social networks of college students’ group relationships, the classification of college students’ groups can be realized. Firstly, on the basis of complex network theory, the essential relationship of college student groups under a complex network is analyzed. Secondly, a new combination algorithm is proposed by using the simplest linear combination method to combine the proximity link prediction based on neighbor information and the likelihood analysis link prediction based on a random block. Finally, the proposed combination algorithm is verified by using the social data of college students’ networks. Experimental results show that, compared with the traditional link prediction algorithm, the proposed combination algorithm can effectively dig out the group characteristics of social networks and improve the accuracy of college students’ association classification.


Sign in / Sign up

Export Citation Format

Share Document