Schisandrin B Attenuates Colitis-Associated Colorectal Cancer through SIRT1 Linked SMURF2 Signaling
Colon cancer, a common type of malignant tumor, seriously endangers human health. However, due to the relatively slow progress in diagnosis and treatment, the clinical therapeutic technology of colon cancer has not been substantially improved in the past three decades. The present study was designed to investigate the effects and involved mechanisms of schisandrin B in cell growth and metastasis of colon cancer. C57BL/6 mice received AOM and dextran sulfate sodium. Mice in treatment groups were gavaged with 3.75–30 mg/kg/day of schisandrin B. Transwell chamber migration, enzyme-linked immunosorbent assay (ELISA), Western blot analysis, immunoprecipitation (IP) and immunofluorescence were conducted, and HCT116 cell line was employed in this study. Data showed that schisandrin B inhibited tumor number and tumor size in the AOD+DSS-induced colon cancer mouse model. Schisandrin B also inhibited cell proliferation and metastasis of colon cancer cells. We observed that schisandrin B induced SMURF2 protein expression and affected SIRT1 in vitro and in vivo. SMURF2 interacted with SIRT1 protein, and there was a negative correlation between SIRT1 and SMURF2 expressions in human colorectal cancer. The regulation of SMURF2 was involved in the anticancer effects of schisandrin B in both in vitro and in vivo models. In conclusion, the present study revealed that schisandrin B suppressed SIRT1 protein expression, and SIRT1 is negatively correlated with the induction of SMURF2, which inhibited cell growth and metastasis of colon cancer. Schisandrin B could be a leading compound, which will contribute to finding novel potential agents and therapeutic targets for colon cancer.