NEUTRINO ASTRONOMY AT THE SOUTH POLE

2013 ◽  
Vol 28 (02) ◽  
pp. 1340004
Author(s):  
ALBRECHT KARLE

The origin of highest energy cosmic rays remains unresolved. High-energy neutrinos may provide the clues to fundamental phenomena such as the origin of cosmic rays or dark matter in the Universe. The IceCube Neutrino Observatory, a km scale neutrino detector, has come into full operation in 2011. At the highest energy levels, prototypes of a new experiment, the Askaryan Radio Array, have been deployed and are being tested. We report on the status, first results and prospects of the experimental neutrino searches under way and planned at the South Pole.

2019 ◽  
Vol 28 (03) ◽  
pp. 1930007 ◽  
Author(s):  
Francis Halzen

After updating the status of the measurements of the cosmic neutrino flux by the IceCube experiment, we summarize the observations of the first identified source of cosmic rays and speculate on the connection between the two observations.


2006 ◽  
Vol 21 (08n09) ◽  
pp. 1914-1924
Author(s):  
PER OLOF HULTH

The Neutrino Telescopes NT-200 in Lake Baikal, Russia and AMANDA at the South Pole, Antarctica have now opened the field of High Energy Neutrino Astronomy. Several other Neutrino telescopes are in the process of being constructed or very near realization. Several thousands of atmospheric neutrinos have been observed with energies up to several 100 TeV but so far no evidence for extraterrestrial neutrinos has been found.


2005 ◽  
Vol 13 ◽  
pp. 949-950
Author(s):  
Francis Halzen

AbstractSolving the century-old puzzle of how and where cosmic rays are accelerated mostly drives the design of high-energy neutrino telescopes. It calls, along with a diversity of science goals reaching particle physics, astrophysics and cosmology, for the construction of a kilometer-scale neutrino detector. This led to the IceCube concept to transform a kilometer cube of transparent Antarctic Ice, one mile below the South Pole, into a neutrino telescope.


2019 ◽  
Vol 210 ◽  
pp. 06007
Author(s):  
Olivier Martineau-Huynh

The Giant Array for Neutrino Detection (GRAND) is a proposal for a giant observatory of ultra-high energy cosmic particles (neutrinos, cosmic rays and gamma rays). It will be composed of twenty subarrays of 10 000 antennas each, totaling a detection area of 200 000 km2. GRAND will reach unprecedented sensitivity to neutrinos allowing to detect cosmogenic neutrinos while its sub-degree angular resolution will also make it possible to hunt for point sources and possibly start neutrino astronomy. Combined with its gigantic exposure to ultra-high energy cosmic rays and gamma rays, GRAND will be a powerful tool to solve the century-long mistery of the nature and origin of the particles with highest energy in the Universe. On the path to GRAND, the GRANDProto300 experiment will be deployed in 2020 over a total area of 200 km2. It primarly aims at validating the detection concept of GRAND, but also proposes a rich science program centered on a precise and complete measurement of the air showers initiated by cosmic rays with energies between 1016.5 and 1018 eV, a range where we expect to observe the transition between the Galactic and extra-galactic origin of cosmic rays.


2005 ◽  
Vol 20 (29) ◽  
pp. 6919-6923
Author(s):  
PAOLO DESIATI ◽  
A. ACHTERBERG ◽  
M. ACKERMANN ◽  
J. AHRENS ◽  
H. ALBRECHT ◽  
...  

The AMANDA neutrino telescope has been in operation at the South Pole since 1996. The present final array configuration, operational since 2000, consists of 677 photomultiplier tubes arranged in 19 strings, buried at depths between 1500 and 2000 m in the ice. The most recent results on a multi-year search for point sources of neutrinos will be shown. The study of events triggered in coincidence with the surface array SPASE and AMANDA provided a result on cosmic ray composition. Expected improvements from IceCube/IceTop will also be discussed.


2012 ◽  
Vol 18 ◽  
pp. 221-229
Author(s):  
◽  
J. R. T. DE MELLO NETO

We present the status and the recent measurements from the Pierre Auger Observatory. The energy spectrum is described and its features discussed. We report searches for anisotropy of cosmic rays arrival directions in large scales and through correlation with catalogues of celestial objects. The measurement of the cross section proton-air is discussed. Finally, the mass composition is addressed with the measurements of the variation of the depth of shower maximum with energy and with the muon density at ground.


2019 ◽  
Vol 488 (1) ◽  
pp. L119-L122 ◽  
Author(s):  
David Wittkowski ◽  
Karl-Heinz Kampert

ABSTRACT Cosmogenic neutrinos originate from interactions of cosmic rays propagating through the universe with cosmic background photons. Since both high-energy cosmic rays and cosmic background photons exist, the existence of high-energy cosmogenic neutrinos is certain. However, their flux has not been measured so far. Therefore, we calculated the flux of high-energy cosmogenic neutrinos arriving at the Earth on the basis of elaborate 4D simulations that take into account three spatial degrees of freedom and the cosmological time-evolution of the universe. Our predictions for this neutrino flux are consistent with the recent upper limits obtained from large-scale cosmic-ray experiments. We also show that the extragalactic magnetic field has a strong influence on the neutrino flux. The results of this work are important for the design of future neutrino observatories, since they allow to assess the detector volume and observation time that are necessary to detect high-energy cosmogenic neutrinos in the near future. An observation of such neutrinos would push multimessenger astronomy to hitherto unachieved energy scales.


1995 ◽  
Vol 41 (139) ◽  
pp. 445-454
Author(s):  

AbstractThe first four strings of phototubes for the AMANDA high-energy neutrino observatory are now frozen in place at a depth of 800-1000 m in ice at the South Pole, During the 1995-96 season, as many as six more strings will be deployed at greater depths. Provided absorption, scattering and refraction of visible light are sufficiently small, the trajectory of a muon into which a neutrino converts can be determined by using the array of phototubes to measure the arrival times of Cherenkov light emitted by the muon. To help in deciding on the depth for implantation of the six new strings, we discuss models of age vs depth for South Pole ice, we estimate mean free paths for scattering from bubbles and dust as a function of depth and we assess distortion of light paths due to refraction at crystal boundaries and interfaces between air-hydrate inclusions and normal ice. We conclude that the interval 1600-2100 m will be suitably transparent for a future 1 km3 observatory except possibly in a region a few tens of meters thick at a depth corresponding to a peak in the dust concentration at 60 k year BP.


2019 ◽  
Vol 209 ◽  
pp. 01022
Author(s):  
Juan-de-Dios Zornoza

Neutrino astronomy is in an exciting moment. The discovery of a cosmic flux of high energy neutrinos by IceCube heralds a new era in which neutrinos have finally joined the multi-messenger study of the Universe. This new important window complements more “traditional” probes (as cosmic rays or photons), given the particular combination of characteristics of neutrinos (neutral, stable and weakly interacting). The ANTARES detector, built in the Mediterranean Sea, has succeeded in two key points. First, it has shown the feasibility of the technique of underwater neutrino telescopes, which offers important advantages in terms of performance (better angular resolution, better visibility of the Galaxy if built in the Northern Hemisphere). This has paved the way for the next step, KM3NeT, already in construction. Second, the physics harvest of ANTARES is very rich, including many results that show the particular advantages of being in the Mediterranean, as mentioned above. The analyses performed include the search for point-like sources, diffuse fluxes, transient phenomena, dark matter, etc. In this talk we will review this long list of achievements.


Sign in / Sign up

Export Citation Format

Share Document