TIME VARIATIONS IN KAMIOKANDE SOLAR NEUTRINO DATA

1991 ◽  
Vol 06 (22) ◽  
pp. 2003-2007 ◽  
Author(s):  
PROBHAS RAYCHAUDHURI

Solar neutrino flux (Eν ≥ 7.5 MeV ) data from 1st January to April 1990 as measured in Kamiokande solar neutrino experiment have been analyzed statistically and have found that the solar neutrino data varies with the solar activity cycle with very high statistical significance (> 98% confidence level). Average solar neutrino flux data in the sunspot minimum range cannot be equal to twice the average solar neutrino flux data in the sunspot maximum range, which suggests that the neutrino flip through the magnetic field of the convection zone of the sun is not responsible for the solar neutrino flux variation. Thus the variation of solar neutrino flux with the solar activity cycle suggests that the solar activity cycle is due to the pulsating character of the nuclear energy generation inside the core of the sun.

1999 ◽  
Vol 14 (08) ◽  
pp. 1205-1223
Author(s):  
PROBHAS RAYCHAUDHURI

It is suggested that the experimental data on the solar neutrino flux as measured in the existing solar neutrino detectors (e.g. Homestake, Kamiokande II and III, Gallex and Sage) vary with the solar activity cycle to a very high level of statistical significance. We have applied the run test and the change point test to the nine sets of solar neutrino flux that have been generated by the Monte-Carlo simulation with production rate and background parameters that are typical of those in the actual Homestake experiment. Homestake solar neutrino flux data show anticorrelation with sunspot numbers from 1970 to February 1994 at a very high level of statistical significance. However, the Kamiokande solar neutrino flux data show correlation with the sunspot number data at a significant level. Again it is shown that out of nine Monte-Carlo-simulated data only three indicate a variation within the period from 1970 to February 1992, but these three Monte-Carlo-simulated solar neutrino flux data do not show significant anticorrelation with the sunspot number data. The solar neutrino flux data from Gallex and Sage show not only variation within the measurement period, i.e. from January 1990 to October 1995, but are also correlated with the sunspot numbers. The Kamiokande solar neutrino flux data not only show variation from January 1987 to February 1995 but are also correlated with the sunspot number data. The variation of solar neutrino flux data within the solar activity cycle and anticorrelation/correlation indicates that the solar activity cycle is due to the pulsating character of the nuclear energy generation inside the core of the sun.


1998 ◽  
Vol 13 (14) ◽  
pp. 1109-1114 ◽  
Author(s):  
PROBHAS RAYCHAUDHURI

The 8 B solar neutrino flux observed in Kamiokande detector (KAMIOKANDE II and III) from January 1987 to February 1995 has been analysed statistically and it has been found that solar neutrino flux data in Kamiokande detector varies with the solar activity cycle. It is also shown that solar neutrino flux data in Kamiokande detector also has five phases during the solar cycle 22 as observed in the Homestake solar neutrino flux data during the solar cycles 21 and 22 indicating that the solar activity cycle is due to the pulsating character of the nuclear energy generation inside the core of the sun.


1993 ◽  
Vol 08 (21) ◽  
pp. 1961-1968 ◽  
Author(s):  
PROBHAS RAYCHAUDHURI

Considering the solar neutrino data during the period from June, 1989 to April, 1992 within first sunspot maximum (it coincides with the maximum of the sunspot (Wolf numbers) and second sunspot maximum (usually appears 2–3 years after the first sunspot maximum) from the four solar neutrino experiments (37 Cl radiochemical, SAGE I & II, Gallex, Kamiokande II & III) we see that the average solar neutrino flux is much higher at the second sunspot maximum (May, 1991 to April, 1992) than at the first sunspot maximum (June, 1989 to April, 1991). This type of observation is already observed in the previous two solar activity cycles in 37 Cl solar neutrino experiment. It has been known for many years that first sunspot maximum and second sunspot maximum are essential features of the solar activity cycle. The above observation suggests that the solar neutrino flux data from the solar neutrino experiments appear to be varying with the solar activity cycle which suggests that the solar activity cycle is due to the pulsating character of the nuclear energy generation inside the core of the Sun.


1988 ◽  
Vol 03 (14) ◽  
pp. 1319-1322 ◽  
Author(s):  
PROBHAS RAYCHAUDHURI

It is shown that the sunspot data and the solar neutrino data anticorrelates except for the period of three years after the sunspot maximum. This suggests that the solar activity cycle is due to the pulsating character of the nuclear energy generation inside the core of the sun.


1991 ◽  
Vol 06 (13) ◽  
pp. 2347-2360 ◽  
Author(s):  
HIROSHI NUNOKAWA ◽  
HISAKAZU MINAKATA

A detailed analysis is performed so as to reveal the statistical significance of the possible anticorrelation between the solar neutrino flux, measured by the 37 Cl experiment, and the sunspot activity. We find that the new data added since 1986 do contribute to improving the significance of the anticorrelation. However, we also observe that the statistical significance depends upon the treatment of errors rather sensitively. Therefore, we conclude that the anticorrelation is not definitively established at the present stage of the experiment. We also point out the possibility of a new type of correlation.


1992 ◽  
Vol 07 (06) ◽  
pp. 1309-1314
Author(s):  
RAUL HORVAT

One of the most attractive solutions to the solar-neutrino problem (including an anticorrelation of the solar-neutrino flux with sunspot activity) incorporates a Majorana neutrino having a flavor-changing transition moment as large as (0.1–1)×10−10 Bohr magnetons. This solution is compatible with all known laboratory, astrophysical and cosmological bounds. Here we show the consistency of the solution with the coherence condition for effective-mass eigenstates inside the sun.


1968 ◽  
Vol 46 (10) ◽  
pp. S491-S493
Author(s):  
V. A. Dergachov ◽  
G. E. Kocharov

We consider the possibilities of investigating the internal structure of the sun using the energy spectrum and the intensity of its neutrino radiation. The experimental determination of the solar neutrino flux will permit us to obtain values for some parameters which are important for the theory of the internal structure of the sun (e.g. the time for evolution and the concentrations of various isotopes in the interior). It is also possible to decide whether or not the gravitational constant varies with time.


Sign in / Sign up

Export Citation Format

Share Document