A PROPOSAL FOR A GENERALIZED CANONICAL osp(1, 2) QUANTIZATION OF DYNAMICAL SYSTEMS WITH CONSTRAINTS
The aim of this letter is to consider the possibility of constructing a generalized canonical quantization method for arbitrary dynamical systems with first-class constraints based on the osp (1, 2) supersymmetry principle. This proposal can be considered as a counterpart to the osp (1, 2)-covariant Lagrangian quantization method introduced recently by Geyer, Lavrov and Mülsch. The gauge dependence of Green's functions is studied. It is shown that if the parameter m2 of the osp (1, 2) superalgebra is not equal to zero, then the vacuum functional and S-matrix depend on the gauge. In the limit m→0 the gauge independence of vacuum functional and S-matrix are restored. The Ward identities related to the osp (1, 2) symmetry are derived.