scholarly journals AN ALGORITHMIC APPROACH TO QUANTUM FIELD THEORY

2006 ◽  
Vol 21 (03) ◽  
pp. 405-447 ◽  
Author(s):  
MASSIMO DI PIERRO

The lattice formulation provides a way to regularize, define and compute the Path Integral in a Quantum Field Theory. In this paper, we review the theoretical foundations and the most basic algorithms required to implement a typical lattice computation, including the Metropolis, the Gibbs sampling, the Minimal Residual, and the Stabilized Biconjugate inverters. The main emphasis is on gauge theories with fermions such as QCD. We also provide examples of typical results from lattice QCD computations for quantities of phenomenological interest.

1997 ◽  
Vol 11 (26n27) ◽  
pp. 3093-3124
Author(s):  
A. Marshakov

I consider main features of the formulation of the finite-gap solutions to integrable equations in terms of complex curves and generating 1-differential. The example of periodic Toda chain solutions is considered in detail. Recently found exact nonperturbative solutions to [Formula: see text] SUSY gauge theories are formulated using the methods of the theory of integrable systems and where possible the parallels between standard quantum field theory results and solutions to the integrable systems are discussed.


Physics Today ◽  
1987 ◽  
Vol 40 (12) ◽  
pp. 86-88
Author(s):  
B. de Wit ◽  
J. Smith ◽  
Lewis H. Ryder ◽  
Peter Becher ◽  
Manfred Böhm ◽  
...  

2014 ◽  
Vol 29 (05) ◽  
pp. 1450026 ◽  
Author(s):  
Fabio Siringo

The principle of stationary variance is advocated as a viable variational approach to quantum field theory (QFT). The method is based on the principle that the variance of energy should be at its minimum when the state of a quantum system reaches its best approximation for an eigenstate. While not too much popular in quantum mechanics (QM), the method is shown to be valuable in QFT and three special examples are given in very different areas ranging from Heisenberg model of antiferromagnetism (AF) to quantum electrodynamics (QED) and gauge theories.


1996 ◽  
Vol 11 (32n33) ◽  
pp. 2601-2609 ◽  
Author(s):  
T.D. KIEU

It is argued that gauge anomalies are only artefacts of the conventional quantization of quantum field theory. When the Berry’s phase is taken into consideration to satisfy certain boundary conditions of the generating path integral, the gauge anomalies associated with homotopically nontrivial gauge transformations are explicitly shown to be eliminated, without any extra quantum fields introduced.


Sign in / Sign up

Export Citation Format

Share Document