ELECTRONIC THEORY FOR ELECTRON-DOPED CUPRATE SUPERCONDUCTORS: d-WAVE SUPERCONDUCTIVITY AND THE PHASE DIAGRAM
Using the one-band Hubbard Hamiltonian we determine various basic properties of the electron-doped cuprate superconductor Nd 2-x Ce x CuO 4 for a spin-fluctuation-induced pairing mechanism. We find a narrow range of superconductivity and, most importantly, like for hole-doped cuprates dx2-y2 -symmetry for the superconducting order parameter. The superconducting transition temperatures Tc(x) for various electron doping concentrations x are calculated to be much smaller than for hole-doped cuprates due to the different energy dispersion and a flat band well below the Fermi level. We find that lattice disorder may sensitively distort the dx2-y2 -symmetry via electron-phonon interaction yielding a finite isotope exponent α0.