Effect of aluminum trace dimension on electro-migration failure in flip-chip package

2017 ◽  
Vol 31 (07) ◽  
pp. 1741002
Author(s):  
Peisheng Liu ◽  
Guangming Fan ◽  
Yahong Liu ◽  
Longlong Yang ◽  
Xiaoyong Miao

A 3D model of flip-chip package is established and thermal–electrical coupling is analyzed. The effect of the width of Aluminum (Al) trace on electro-migration mechanism is also studied. Reducing rates of the hot-spot temperature, the max Joule heating, the max temperature gradient and the max current density are defined to research the effects of the Al trace thickness and the UBM thickness on electro-migration.

2010 ◽  
Vol 1249 ◽  
Author(s):  
Chih Chen ◽  
Yu Chun Liang ◽  
D. J. Yao

AbstractIn this study, the temperature map distribution in the Sn3.0Ag0.5Cu solder bump with Cu column under current stressing is directly examined using infrared microscopy. It is the radiance changes between the different materials of the surface that cause the unreasonable temperature map distribution. By coating a thin layer of black optical paint which is in order to eliminate the radiance changes, we got the corrected temperature map distribution. Under a current stress of 1.15 × 104 A/cm2 at 100℃C, the hot-spot temperature is 132.2℃ which surpasses the average Cu column temperature of 129.7℃C and the average solder bump temperature of 127.4 ℃. Thermomigration in solder may still occur under a large current stressing.


2008 ◽  
Vol 104 (3) ◽  
pp. 033708 ◽  
Author(s):  
Hsiang-Yao Hsiao ◽  
S. W. Liang ◽  
Min-Feng Ku ◽  
Chih Chen ◽  
Da-Jeng Yao

1995 ◽  
Vol 391 ◽  
Author(s):  
S. P. Riege ◽  
A. W. Hunt ◽  
J. A. Prybyla

AbstractDirect real-time observations of electromigration (EM) in submicron Al interconnects were made using a special sample-stage which allowed TEM observations to be recorded while simultaneously heating and passing current through the sample. The samples consisted of 4000 Å thick Al(0.5wt%Cu) patterned over a TEM-transparent window into five runners in parallel, with linewidths 0.2, 0.3, 0.5, 0.8, and 1.0 μm. Both passivated and unpassivated samples were examined. A current density of 2 x 106A/cm2 was used with temperatures ranging from 200 - 350°C. The experiments were done using constant voltage testing, and we used a special sample design which dramatically minimized Joule-heating. Our approach has allowed us to directly observe voids form, grow, migrate, pin, fail a runner, and heal, all with respect to the detailed local microstructure of the runners.


1986 ◽  
Vol 87 ◽  
Author(s):  
R. P. Silberstein ◽  
D. J. Larson

AbstractWe have studied the spatial profile of the thermal transients that occur during and following the current pulsing associated with Peltier Interface Demarcation during directional solidification. Results for pure Bi are presented in detail and compared with corresponding results for the Bi/MnBi eutectic. Significant thermal transients occur throughout the sample that can be accounted for by the Peltier effect, the Thomson effect, and Joule heating. We have separated these effects and studied their behavior as a function of time, current density, and position with respect to the solid/liquid interface.


Author(s):  
Zhengwei Ge ◽  
Chun Yang

Microfluidic concentration of sample species is achieved using the temperature gradient focusing (TGF) in a microchannel with a step change in the cross-section under a pure direct current (DC) field or a combined alternating current (AC) and DC electric field. Experiments were carried out to study the effects of applied voltage, buffer concentration and channel size on sample concentration in the TGF processes. These effects were analyzed and summarized using a dimensionless Joule number that is introduced in this study. In addition, Joule number effect in the Poly-dimethylsiloxane (PDMS)/PDMS microdevice was compared with the PDMS/Glass microdevice. A more than 450-fold concentration enhancement was obtained within 75 seconds in the PDMS/PDMS microdevice. Results also showed that the high frequency AC electric field which contributes to produce the temperature gradient and reduces the required DC voltage for the sample concentration. The lower DC voltage has generated slower electroosmotic flow (EOF), which reduces the backpressure effect associated with the finite reservoir size. Finally, a more than 2500-fold concentration enhancement was obtained within 14 minutes in the PDMS/PDMS microdevice, which was a great achievement in this TGF technique using inherent Joule heating effects.


Sign in / Sign up

Export Citation Format

Share Document