Absolute negative mobility in the anomalous diffusion

2017 ◽  
Vol 31 (32) ◽  
pp. 1750259 ◽  
Author(s):  
Ruyin Chen ◽  
Chongyang Chen ◽  
Linru Nie

Transport of an inertial Brownian particle driven by the multiplicative Lévy noise was investigated here. Numerical results indicate that: (i) The Lévy noise is able to induce absolute negative mobility (ANM) in the system, while disappearing in the deterministic case; (ii) the ANM can occur in the region of superdiffusion while disappearing in the region of normal diffusion, and the appropriate stable index of the Lévy noise makes the particle move along the opposite direction of the bias force to the maximum degree; (iii) symmetry breaking of the Lévy noise also causes the ANM effect. In addition, the intrinsic physical mechanism and conditions for the ANM to occur are discussed in detail. Our results have the implication that the Lévy noise plays an important role in the occurrence of the ANM phenomenon.

Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 617
Author(s):  
Jianpeng Ma ◽  
Shi Zhuo ◽  
Chengwei Li ◽  
Liwei Zhan ◽  
Guangzhu Zhang

When early failures in rolling bearings occur, we need to be able to extract weak fault characteristic frequencies under the influence of strong noise and then perform fault diagnosis. Therefore, a new method is proposed: complete ensemble intrinsic time-scale decomposition with adaptive Lévy noise (CEITDALN). This method solves the problem of the traditional complete ensemble intrinsic time-scale decomposition with adaptive noise (CEITDAN) method not being able to filter nonwhite noise in measured vibration signal noise. Therefore, in the method proposed in this paper, a noise model in the form of parameter-adjusted noise is used to replace traditional white noise. We used an optimization algorithm to adaptively adjust the model parameters, reducing the impact of nonwhite noise on the feature frequency extraction. The experimental results for the simulation and vibration signals of rolling bearings showed that the CEITDALN method could extract weak fault features more effectively than traditional methods.


2020 ◽  
Vol 42 (1) ◽  
pp. 65-84
Author(s):  
Jinzhong Ma ◽  
Yong Xu ◽  
Yongge Li ◽  
Ruilan Tian ◽  
Shaojuan Ma ◽  
...  

AbstractIn real systems, the unpredictable jump changes of the random environment can induce the critical transitions (CTs) between two non-adjacent states, which are more catastrophic. Taking an asymmetric Lévy-noise-induced tri-stable model with desirable, sub-desirable, and undesirable states as a prototype class of real systems, a prediction of the noise-induced CTs from the desirable state directly to the undesirable one is carried out. We first calculate the region that the current state of the given model is absorbed into the undesirable state based on the escape probability, which is named as the absorbed region. Then, a new concept of the parameter dependent basin of the unsafe regime (PDBUR) under the asymmetric Lévy noise is introduced. It is an efficient tool for approximately quantifying the ranges of the parameters, where the noise-induced CTs from the desirable state directly to the undesirable one may occur. More importantly, it may provide theoretical guidance for us to adopt some measures to avert a noise-induced catastrophic CT.


2019 ◽  
Vol 42 (2) ◽  
pp. 330-336
Author(s):  
Dongbing Tong ◽  
Qiaoyu Chen ◽  
Wuneng Zhou ◽  
Yuhua Xu

This paper proposes the [Formula: see text]-matrix method to achieve state estimation in Markov switched neural networks with Lévy noise, and the method is very distinct from the linear matrix inequality technique. Meanwhile, in light of the Lyapunov stability theory, some sufficient conditions of the exponential stability are derived for delayed neural networks, and the adaptive update law is obtained. An example verifies the condition of state estimation and confirms the effectiveness of results.


Sign in / Sign up

Export Citation Format

Share Document