Scalings of first-return time for random walks on generalized and weighted transfractal networks
The first-return time (FRT) is an effective measurement of random walks. Presently, it has attracted considerable attention with a focus on its scalings with regard to network size. In this paper, we propose a family of generalized and weighted transfractal networks and obtain the scalings of the FRT for a prescribed initial hub node. By employing the self-similarity of our networks, we calculate the first and second moments of FRT by the probability generating function and obtain the scalings of the mean and variance of FRT with regard to network size. For a large network, the mean FRT scales with the network size at the sublinear rate. Further, the efficiency of random walks relates strongly with the weight factor. The smaller the weight, the better the efficiency bears. Finally, we show that the variance of FRT decreases with more number of initial nodes, implying that our method is more effective for large-scale network size and the estimation of the mean FRT is more reliable.